Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T04:27:48.027Z Has data issue: false hasContentIssue false

The influence of nutritional history on the functional response of Geocoris pallidipennis to its prey, Myzus persicae

Published online by Cambridge University Press:  03 July 2014

F. Liu
Affiliation:
Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
F. Zeng*
Affiliation:
Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
*
*Author for correspondence Phone: 8601082109714 E-mail: [email protected]

Abstract

Insect artificial diets are the foundation for mass production of insect predators. Whether there is an influence of long-term rearing with artificial diet on the control ability of predators should be considered. Here, we focused on the effect of nutritional history on the functional response of Geocoris pallidipennis to Myzus persicae. The influence of nutritional history (artificial diet versus natural prey, M. persicae) on the functional response of third to fifth instar nymphs and female G. pallidipennis was examined in the laboratory. The results showed that the functional response curve of both the nymphs and the adult female of G. pallidipennis to M. persicae reflected similar trends on both nutritional histories and confirmed the type II response. Adult female G. pallidipennis reared on either M. persicae or artificial diet produced a significantly better performance than the juvenile stages tested. We estimated that adult female G. pallidipennis can consume 141.6 (artificial diet) or 131.6 (M. persicae) aphids per day, respectively. This indicated that G. pallidipennis reared on both artificial diet and M. persicae displayed high rates of predation.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ai, S.Z. & Zhu, Z.X. (1989) The biological observation of Geocoris pallidipennis (Costa). Natural Enemies of Insects 11, 3638 (in Chinese).Google Scholar
Alves, S.B., Tamai, M.A., Rossi, L.S. & Castiglioni, E. (2005) Beauveria bassiana pathogenicity to the citrus rust mite Phyllocoptruta oleivora . Experimental and Applied Acarology 37, 117122.CrossRefGoogle Scholar
Bonte, M. & De Clercq, P. (2010) Influence of diet on the predation rate of Orius laevigatus on Frankliniella occidentalis . BioControl 55, 625629.Google Scholar
Castagnoli, M. & Simoni, S. (1999) Effect of long-term feeding history on functional and numberical response of Neoseiulus californicus (Acari: Phytoseiidae). Experimental and Applied Acarology 23, 217234.Google Scholar
Castañé, C. & Zapata, R. (2005) Rearing the predatory bug Macrolophus caliginosus on a meat-based diet. Biological Control 34, 6672.Google Scholar
Castañé, C., Iriarte, J. & Lucas, E. (2002) Comparison of prey consumption by Dicyphus tamaninii reared conventionally, and on a meat-based diet. BioControl 47, 657666.CrossRefGoogle Scholar
Chocorosqui, V.R. & De Clercq, P. (1999) Developmental and predatory performance of Podisus maculiventris (Say) (Heteroptera: Pentatomidae) reared on a meat-based artificial diet. Mededelingen-Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent 64, 229234.Google Scholar
Cohen, A.C. (1985) A simple method for rearing the insect predator Geocoris punctipes on a meat diet. Journal of Economic Entomology 7, 11731175.CrossRefGoogle Scholar
Cohen, A.C. (2000) Feeding fitness and quality of domesticated and feral predators: effects of long-term rearing on artificial diet. Biological Control 17, 5054.Google Scholar
Crocker, R.L. & Whitcomb, W.H. (1980) Feeding niches of the big-eyed bugs Geocoris bullatus, G. punctipes, and G. uliginosus (Hemiptera: Lygaeidae: Geocorinae). Environmental Entomology 9, 508513.Google Scholar
De Clercq, P. & Degheele, D. (1993) Quality assessment of the predatory bugs Podisus maculiventris (Say) and Podisus sagitta (Fab.) (Heteroptera: Pentatomidae) after prolonged rearing on a meat-based artificial diet. Biocontrol Science and Technology 3, 133139.Google Scholar
Field, L.M., Devonshire, A.L. & Forde, B.G. (1988) Molecular evidence that insecticide resistance in peach-potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene. Biochemical Journal 251, 309312.Google Scholar
Gitonga, L.M., Overholt, W.A., Löhr, B., Magambo, J.K. & Mueke, J.M. (2002) Functional response of Orius albidipennis (Hemiptera: Anthocoridae) to Megalurothrips sjostedti (Thysanoptera: Thripidae). Biological Control 24, 16.Google Scholar
Gotelli, N.J. (1995) A Primer of Ecology. Sunderland, MA, USA, Sinauer Associates Incorporated.Google Scholar
Gotoh, T., Nozawa, M. & Yamaguchi, K. (2004) Prey consumption and functional response of three acarophagous species to eggs of the two-spotted spider mite in the laboratory. Applied Entomology and Zoology 39, 97105.Google Scholar
Hagler, J.R. & Cohen, A.C. (1991) Prey selection by in vitro and field-reared Geocoris punctipes . Entomologia experimentalis et Applicata 59, 201205.Google Scholar
Hassell, M.P. (1978) The Dynamics of Arthropod Predator–Prey Systems. Princeton, NJ, USA, Princeton University Press.Google Scholar
Hill, D.S. (1983) Myzus persicae (Sulz.). p. 746 in Hill, D.S. (Ed.) Agricultural Insect Pests of the Tropics and Their Control, Cambridge, Cambridge University Press.Google Scholar
Holling, C.S. (1959) Some characteristics of simple types of predation and parasitism. Canadian Entomologist 91, 385398.Google Scholar
Holling, C.S. (1965) The functional response of predators to prey density and its role in mimicry and population regulation. Memoirs of the Entomological Society of Canada 45, 360.Google Scholar
Jalali, M.A., Tirry, L. & De Clercq, P. (2010) Effect of temperature on the functional response of Adalia bipunctata to Myzus persicae . BioControl 55, 261269.CrossRefGoogle Scholar
Liu, F., Liu, C. & Zeng, F. (2013) Effects of an artificial diet on development, reproduction and digestive physiology of Chrysopa septempunctata . BioControl 58, 789795.CrossRefGoogle Scholar
Meyerdirk, D.E., French, J.V. & Hart, W.G. (1982) Effect of pesticide residues on the natural enemies of citrus mealybug. Environmental Entomology 11, 134136.Google Scholar
Milonas, P.G., Kontodimas, D.C., Martinou, A.F. (2011) A predator's functional response: influence of prey species and size. Biological Control 59, 141146.Google Scholar
Morozov, A. & Petrovskii, S.V. (2013) Feeding on multiple sources: towards a universal parameterization of the functional response of a generalist predator allowing for switching. PLoS One 8, e74586.CrossRefGoogle ScholarPubMed
Omoto, C., Dennehy, T.J., McCoy, C.W., Crane, S.E. & Long, J.W. (1994) Detection and characterization of the interpopulation variation of citrus rust mite (Acari: Eriophyidae) resistance to dicofol in Florida citrus. Journal of Economic Entomology 87, 566572.Google Scholar
Persson, L., Leonardsson, K., de Roos, A.M., Gyllenberg, M. & Christensen, B. (1998) Ontogenetic scaling of foraging rates and the dynamics of a size-structured consumer-resource model. Theoretical Population Biology 54, 270293.Google Scholar
Saavedra, J.L.D., Zanuncio, J.C., Zanuncio, T.V. & Guedes, R.N.C. (1997) Prey capture ability of Podisus nigrispinus (Dallas) (Het. Pentatomidae) reared for successive generations on a meridic diet. Journal of Applied Entomology 121, 327330.Google Scholar
SAS Institute (2004) SAS/STAT© 9.1 User's Guide. Cary, NC, USA, SAS Institute.Google Scholar
Tillman, G., Lamb, M. & Mullinix, B. Jr. (2009) Pest insects and natural enemies in transitional organic cotton in Georgia. Journal of Entomological Science 44, 1123.Google Scholar
Tong, Y.J., Lu, Y.H. & Wu, K.M. (2011) Predation of Geocoris pallidipennis on Adelphocoris lineolatus . Chinese Journal of Applied Entomology 48, 136140 (in Chinese).Google Scholar
Van Leeuwen, E., Brannstrom, A., Jansen, V.A.A., Dieckmann, U. & Rossberg, A.G. (2013) A generalized functional response for predators that switch between multiple prey species. Journal of Theoretical Biology 328, 8998.Google Scholar
Xia, J.Y., Rabbinge, R. & Van der Werf, W. (2003) Multistage functional response in a ladybeetle–aphid system scaling up from the laboratory to the field. Environmental Entomology 32, 151162.Google Scholar
Zhi, J.R., Zheng, S.S., Zhang, C.R. & Liu, F.J. (2011) The predation of Orius similis to Frankliniella occidentalis and Aphis craccivora . Chinese Journal of Applied Entomology 48, 573578 (in Chinese).Google Scholar