Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T04:30:42.089Z Has data issue: false hasContentIssue false

Impact assessment of the biological control of the cassava mealybug, Phenacoccus manihoti Matile-Ferrero (Hemiptera: Pseudococcidae), by the introduced parasitoid Epidinocarsis lopezi (De Santis) (Hymenoptera: Encyrtidae)

Published online by Cambridge University Press:  10 July 2009

P. Neuenschwander
Affiliation:
Biological Control Programme, International Institute of Tropical Agriculture, Benin Research Station, B.P. 062523 Cotonou, Benin
W. N. O Hammond
Affiliation:
Biological Control Programme, International Institute of Tropical Agriculture, Benin Research Station, B.P. 062523 Cotonou, Benin
A. P. Gutierrez
Affiliation:
Division of Biological Control, University of California, Berkeley, 1050 San Pablo Avenue, Albany, CA 94706, USA
A. R. Cudjoe
Affiliation:
Plant Protection and Quarantine UnitDepartment of Agriculture, P.O. Box M37, Accra, Ghana
R. Adjakloe
Affiliation:
Plant Protection and Quarantine UnitDepartment of Agriculture, P.O. Box M37, Accra, Ghana
J. U. Baumgärtner
Affiliation:
Division of Phytomedicine, Swiss Federal Institute of Technology, ETH-Zentrum, Zürich, Switzerland
U. Regev
Affiliation:
Department of Economics, Ben Gurion University, Beersheva, Israel

Abstract

The impact of Phenacoccus manihoti Matile-Ferrero on growth and tuber yield of cassava, and the results of its biological control by the exotic parasitoid Epidinocarsis lopezi (De Santis) were investigated in a survey of 60 farmers' fields in Ghana and Ivory Coast over an area of 180 000 km2 of the savana and forest ecosystems. Twenty-nine variables associated with plant growth, agronomic and environmental factors, and insect populations were recorded. Densities of P. manihoti were closely correlated with stunting of the cassava shoot tips and, less so, with the rate of stunting early in the growing season. With increasing mealybug infestations, average harvest indices declined and populations of E. lopezi and of indigenous coccinellids increased, but parasitoids were found at lower host levels than were predators. The length of time E. lopezi had been present in an area was the most important factor influencing mealybug densities. Thus, P. manihoti populations were significantly lower where E. lopezi had been present for more than half the planting season than in areas where E. lopezi was lacking or had been only recently introduced. A significant proportion of the farmers in the savanna zone, where P. manihoti populations were much higher than in the forest zone, had observed this decline due to E. lopezi. Tuber yield losses due to P. manihoti in the absence of E. lopezi were tentatively estimated at 463 g/plant in the savanna zone. No significant effect was found in the forest region. When E. lopezi was present, average P. manihoti damage scores were reduced significantly, both in the savanna and forest regions. The increase in yields was 228g/plant or about 2.48 t/ha in the savanna region.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartlett, B. R. (1978). Pseudococcidae.—pp. 137170 in Clausen, C. P. (Ed.). Introduced parasites and predators of arthropod pests and weeds: a world review.—545 pp. ARS, USDA, Washington D. C. (Agric. Handbk no. 480).Google Scholar
Baumgärtner, J., Regev, U., Rahalivavolona, N., Graf, B., Zahner, P. & Delucchi, V. (in press). Rice production in Madagascar: regression analysis with particular references to pest control.—Agric. Ecosystems & Environ.Google Scholar
Boerboom, B. W. J. (1978). A model of dry matter distribution in cassava (Manihot esculenta Crantz).—Neth. J. agric. Sci. 26, 267277.Google Scholar
Boussienguet, J. (1986). Le complex entomophage de la cochenille du manioc, Phenacoccus manihoti (Hom. Coccoidae Pseudococcidae) au Gabon. I.—Inventaire faunistique et relations trophiques.—Annls Soc. ent. Fr. (N.S.) 22, 3544.CrossRefGoogle Scholar
Bradley, R. S., Diaz, H. F., Eischeid, J. K., Jones, P. D., Kelly, P. M. & Goodess, C. M. (1987). Precipitation fluctuations over northern hemisphere land areas since the mid-19th century.—Science 237, 171175.CrossRefGoogle ScholarPubMed
Chapman, R. F., Page, W. W. & McCaffery, A. R. (1986). Bionomics of the variegated grasshopper (Zonocerus variegatus) in West and Central Africa.—A. Rev. Ent. 31, 479505.CrossRefGoogle Scholar
Connor, D. J. & Cook, J. H. (1981). Response of cassava to water shortage. II. Canopy dynamics.—Field Crops Res. 4, 285296.CrossRefGoogle Scholar
Connor, D. J., Cock, J. H. & Parga, G. H. (1981). Response of cassava to water shortage. I. Growth and yield.—Field Crops Res. 4, 181200.CrossRefGoogle Scholar
Cock, J. H., Franklin, D., Sandoval, G. & Juri, P. (1979). The ideal cassava plant for maximum yield.—Crop Sci. 19, 271279.CrossRefGoogle Scholar
Dahniya, M. T., Oputa, C. O. & Hahn, S. K. (1982). Investigating source-sink relations in cassava by reciprocal grafts.—Expl Agric. 18, 399402.CrossRefGoogle Scholar
Fabres, G. (1981). Bioécologie de la cochenille du manioc (Phenacoccus manihoti Hom. Pseudococcidae) en République Populaire du Congo. II..—Variations d'abondance et facteurs de régulation.—Agron. trop. 36, 369377.Google Scholar
Fabres, G. & Boussienguet, J. (1981). Bioécologie de la cochenille du manioc (Phenacoccus manihoti Hom. Pseudococcidae) en République Populaire du Congo. I.—Cycle évolutif et paramétres biologiques.—Agron. trop 36, 8289.Google Scholar
Fabres, G. & Matile-Ferrero, D. (1980). Les entomophages inféodés à la cochenille du manioc, Phenacoccus manihoti (Hom, Coccidea Pseudococcidae) en République Populaire du Congo. I. Les composantes de l'entomocoenose et leurs inter-relations.—Annls Soc. ent. Fr. (N. S.) 16, 509515.CrossRefGoogle Scholar
FAO (FOOD AND AGRICULTURE ORGANISATION OF THE UNITED NATIONS) (1985). Production year book 1984.—330 pp. Rome, FAO.Google Scholar
Gutierrez, A. P., Neuenschwander, P., Schulthess, F., Herren, H. R., Baumgätner, J. U., Wermelinger, B., Löhr, B. & Ellis, C. K. (1988a). Analysis of biological control of cassava pests in Africa: II. Cassava mealybug Phenacoccus manihoti.—J. appl. Ecol. 25, 921940.CrossRefGoogle Scholar
Gutierrez, A. P., Wermelinger, B., Schulthess, F., Baumgärtner, J. U., Yaninek, J. S., Herren, H. R., Neuenschwander, P., Löhr, B., Hammond, W. N. O. & Ellis, C. K. (1987). An overview of a system model of cassava and cassava pests in Africa.—Insect Sci. Applic. 8, 919924.Google Scholar
Gutierrez, A. P., Wermelinger, B., Schulthess, F., Ellis, C. K., Baumgärtner, J. U. & Yaninek, J. S. (1988b). Analysis of biological control of cassava pests in Africa: I. Simulation of carbon, nitrogen and water dynamics in cassava.—J. appl. Ecol. 25, 901920.CrossRefGoogle Scholar
Hagen, K. S. (1976). Role of nutrition in insect management.—pp. 221261 in Proceedings Tall Timbers Conference on Ecological Animal Control by Habitat Management, no. 6, 02. 28– 03 1, 1974, Gainesville, Florida.—267 pp. Tallahassee, Fla, Tall Timbers Res Stn.Google Scholar
Hahn, S. K., Terry, E. R., Leuschner, K., Akobundu, I. O., Okali, C. & Lal, R. (1979). Cassava improvement in Africa.—Field Crops Res. 2, 193226.CrossRefGoogle Scholar
Hammond, W. N. O., Neuenschwander, P. & Herren, H. R. (1987). Impact of the exotic parasitoid Epidinocarsis lopezi on cassava mealybug (Phenacoccus manihoti)populations.—Insect Sci. Applic. 8, 887891.Google Scholar
Herren, H. R. (1981). Biological control of the cassava mealybug.—pp. 7980. in Terry, E. R., Oduro, K. A. & Caveness, F. (Eds). Tropical root crops, research strategies for the 1980s. Proceedings of the First Triennial Root Crops Symposium of the International Society for Tropical Root Crops—Africa Branch, 8–12 09 1980, Ibadan, Nigeria.—279 pp. Ottawa, Int. Dev. Res. Cent.Google Scholar
Herren, H. R. (1987). Africa-wide Biological Control Project of Cassava Pests. A review of objectives and achievements.—Insect Sci. Applic. 8, 837840.Google Scholar
Herren, H. R. & Lema, K. M. (1982). CMB—first successful releases.—Biocontrol News Inf. 3, 185.Google Scholar
Herren, H. R. & Lema, K. M. (1983). Follow-up on previous releases of natural enemies.—IITA. Ann. Rep. 1982, 9496.Google Scholar
Herren, H. R., Neuenschwander, P., Hennessey, R. D. & Hammond, W. N. O. (1987). Introduction and dispersal of Epidinocarsis lopezi (Hym., Encyrtidae), an exotic parasitoid of the cassava mealybug, Phenacoccus manihoti (Hom., Pseudococcidae), in, Africa.—Agric. Ecosystems & Environ. 19, 131144.CrossRefGoogle Scholar
Korang-Amoakoh, S., Cudjoe, R. A. & Adjakloe, R. K. (1987). Biological control of cassava pests in Ghana.—Insect Sci. Applic. 8, 905907.Google Scholar
Le Pelley, R. H. (1943). An oriental mealybug (Pseudococcus lilacinus Ckll.) (Hemiptera) and its insect enemies.—Trans. R. ent. Soc. Lond. 93, 7393.CrossRefGoogle Scholar
Matile-Ferrero, D. (1977). Une cochenille nouvelle nuisible au manioc en Afrique Équatoriale, Phenacoccus manihoti n. sp. (Homoptera, Coccoidae, Pseudococcidae).—Annls Soc. ent. Fr. (N.S.) 13, 145152.CrossRefGoogle Scholar
Neuenschwander, P. & Hammond, W. N. O. (1988). Natural enemy activity following the introduction of Epidinocarsis lopezi (Hymenoptera, Encyrtidae) against the cassava mealybug, Phenacoccus manihoti (Homoptera, Pseudococcidae), in southwestern Nigeria.—Environ. Entomol. 17, 894902.CrossRefGoogle Scholar
Neuenschwander, P. & Herren, H. R. (1988). Biological control of the cassava mealybug, Phenacoccus manihoti, by the exotic parasitoid Epidinocarsis lopezi in Africa.—Phil. Trans. R. Soc. (B) 318, 319333.Google Scholar
Neuenschwander, P., Hennessey, R. D. & Herren, H. R. (1987). Food web of insects associated with the cassava mealybug, Phenacoccus manihoti Matile-Ferrero (Hemiptera: Pseudococcidae), and its introduced parasitoid, Epidinocarsis lopezi (De Santis) (Hymenoptera: Encyrtidae), in Africa.—Bull. ent. Res. 77, 177189.CrossRefGoogle Scholar
Neuenschwander, P., Schulthess, F. & Madojemu, E. (1986). Experimental evaluation of the efficiency of Epidinocarsis lopezi, a parasitoid introduced into Africa against the cassava mealybug Phenacoccus manihoti.—Entomologia exp. appl. 42, 133138.CrossRefGoogle Scholar
Njoku, B. O. & Odurukwe, S. O. (1987). Evaluation of nitrogen fertilizer sources and rates for a cassava-maize intercrop.—pp. 3033 in Terry, E. R., Akoroda, M. O. & Arene, O. B. (Eds). Tropical root crops, root crops and the African food crisis. Proceedings of the Third Triennial Symposium of the International Society for Tropical Root Crops—Africa Branch, 17–23 08. 1986, Owerri, Nigeria.—197 pp. Ottawa, Int. Dev. Res. Centre.Google Scholar
Norgaard, R. B. (1988). The biological control of cassava mealybug in Africa.—Am. J. Agric. Econ. 70, 366371.CrossRefGoogle Scholar
Nwanze, K. F. (1982). Relationships between cassava root yields and crop infestations by the mealybug, Phenacoccus manihoti.—Trop. Pest Management 28, 2732.CrossRefGoogle Scholar
Oldfield, M. L. & Alcorn, J. B. (1987). Conservation of traditional ecosystems.—BioScience 37, 199208.CrossRefGoogle Scholar
PRONAM (PROGRAMME NATIONAL MANIOC) (1978). Rapport annuel.—40 pp. M'Vuazi, Zaire, Institut National d'Etudes et de Recherches Agricoles/Dept. Agric. (mimeograph).Google Scholar
Schulthess, F. (1987). The interactions between cassava mealybug (Phenacoccus manihoti Mat.Ferr.) populations and cassava (Manihot esculenta Crantz) as influenced by weather.—136 pp. Ph.D. diss., Swiss Fed. Inst. Technol., Zürich, Switzerland.Google Scholar
Schulthess, R., Baumgärtner, J. U. & Herren, H. R. (1989). Sampling Phenacoccus manihoti in cassava fields in Nigeria.—Trop. Pest Management 35, 193200.CrossRefGoogle Scholar
Shanmugavelu, K. G., Thamburaj, S., Shamugam, A. & Gopala Swamy, A. (1973). Effects of time of planting and irrigation frequencies on the yield of tapioca.—Indian J. agric. Sci. 43, 789791.Google Scholar
Walker, P. T., Heydon, D. L. & Guthrie, E. J. (1985). Report of a survey of cassava yield losses caused by mealybug and green mite in Africa, with special reference to Ghana.—82 pp. London, Trop. Dev. Res. Inst.Google Scholar
Wilson, L. T. & Room, P. M. (1983). Clumping patterns of fruit and arthropods in cotton with implications for binomial sampling.—Environ. Entomol. 12, 5054.CrossRefGoogle Scholar
Yaninek, J. S. & Herren, H. R. (1988). Introduction and spread of the cassava green mite, Mononychellus tanajoa (Bondar) (Acari: Tetranychidae), an exotic pest in Africa and the search for appropriate control methods: a review.—Bull. ent. Res. 78, 113.CrossRefGoogle Scholar