Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-04T19:44:18.976Z Has data issue: false hasContentIssue false

Identification of aphid (Hemiptera: Aphididae) species of economic importance in Kenya using DNA barcodes and PCR-RFLP-based approach

Published online by Cambridge University Press:  22 October 2015

G. Kinyanjui
Affiliation:
International Centre of Insect Physiology and Ecology, PO Box 30772-00100 GPO, Nairobi, Kenya Kenyatta University, PO Box 43844-00100 GPO, Nairobi, Kenya
F.M. Khamis*
Affiliation:
International Centre of Insect Physiology and Ecology, PO Box 30772-00100 GPO, Nairobi, Kenya Kenyatta University, PO Box 43844-00100 GPO, Nairobi, Kenya
S. Mohamed
Affiliation:
International Centre of Insect Physiology and Ecology, PO Box 30772-00100 GPO, Nairobi, Kenya
L.O. Ombura
Affiliation:
International Centre of Insect Physiology and Ecology, PO Box 30772-00100 GPO, Nairobi, Kenya
M. Warigia
Affiliation:
Kenyatta University, PO Box 43844-00100 GPO, Nairobi, Kenya
S. Ekesi
Affiliation:
International Centre of Insect Physiology and Ecology, PO Box 30772-00100 GPO, Nairobi, Kenya
*
*Author for correspondence Fax: +254 (20) 8632001 E-mail: [email protected]

Abstract

Aphids are among pests of economic importance throughout the world. Together with transmitting plant viruses, aphids are capable of inflicting severe crop production losses. They also excrete honeydew that favours the growth of sooty mold which reduces the quality of vegetables and fruits and hence their market values. Rapid and accurate identification of aphids to the species level is a critical component in effective pest management and plant quarantine systems. Even though morphological taxonomy has made a tremendous impact on species-level identifications, polymorphism, morphological plasticity and immature stages are among the many challenges to accurate identification. In addition, their small size, presence of cryptic species and damaged specimens dictate the need for a strategy that will ensure timely and accurate identification. In this study, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP)-based on mitochondrial cytochrome c oxidase subunit I gene and DNA barcoding were applied to identify different aphid species collected from different agro-ecological zones of Kenya. Three restriction enzymes RsaI, AluI and Hinf1 produced patterns that allowed unambiguous identification of the species except Aphis craccivora and Aphis fabae. Analyses of the barcode region indicated intraspecific and interspecific sequence divergences of 0.08 and 6.63%, respectively. DNA barcoding identified all species, including the morphologically indistinguishable A. craccivora and A. fabae and separated two subspecies of A. fabae. Based on these results, both PCR-RFLPs and DNA barcoding could provide quick and accurate tools for identification of aphid species within Aphididae subsequently aiding in effective pest management programmes and enhance plant quarantine systems.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ansari, A.K., van Emden, H.F. & Singh, S.R. (1992) Varietal resistance of cowpea to cowpea aphid, Aphis craccivora Koch. International Journal of Tropical Insect Science 13, 199203, doi: 10.1017/S1742758400014351.CrossRefGoogle Scholar
Armstrong, K.F. & Ball, S.L. (2005) DNA barcodes for biosecurity: invasive species identification. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360, 18131823.CrossRefGoogle ScholarPubMed
Armstrong, K.F., Cameron, C.M. & Frampton, E.R. (1997) Fruit fly (Diptera: Tephritidae) species identification: a rapid molecular diagnostic technique for quarantine application. Bulletin of Entomological Research 87, 111118.CrossRefGoogle Scholar
Aslam, M., Razaq, M., Ahmad, F. & Mirza, Y.H. (2007) Population abundance of aphids (Brevicoryne brassicae L. and Lipaphis erysimi (Kalt.) on Indian mustard (Brassica juncea L.). African Crop Science Conference Proceedings 8, 935938.Google Scholar
Ball, S.L. & Armstrong, K.F. (2006) DNA barcodes for insect pest identification: a test case with tussock moths (Lepidoptera: Lymantriidae). Canadian Journal of Forest Research 36, 337350.CrossRefGoogle Scholar
Blackman, R.L. & Eastop, V.F. (2000) Aphids on the World's Crops: an Identification and Information Guide. 2nd edn.. England, John Wiley & Sons Ltd.Google Scholar
Bock, K.R. & Conti, M. (1974) Cowpea aphid-borne mosaic virus. CMI/AAB Descriptions of plant viruses. No. 134.Google Scholar
Brunner, P.C., Fleming, C. & Frey, J.E. (2002) A molecular identification key for economically important thrips species (Thysanoptera: Thripidae) using direct sequencing and a PCR–RFLP-based approach. Agricultural and Forestry Entomology 4, 127136.CrossRefGoogle Scholar
Cocuzza, G.E.M. & Cavalieri, V. (2014) Identification of aphids of Aphis frangulae-group living on Lamiaceae species through DNA barcode. Molecular Ecology Resources 14, 447457.CrossRefGoogle ScholarPubMed
Coeur d'acier, A., Jousselin, E., Martin, J.F. & Rasplus, J.Y. (2007) Phylogeny of the Genus Aphis Linnaeus, 1758 (Homoptera: Aphididae) inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 42, 598611.CrossRefGoogle ScholarPubMed
Coeur d'acier, A., Cruaud, A., Artige, E., Genson, G., Clamens, A.L., Pierre, E., Hudaverdian, S., Simon, J.C., Jousselin, E. & Rasplus, J.Y. (2014) DNA barcoding and the associated PhylAphidB@se website for the identification of European aphids (Hemiptera: Aphididae). PLoS ONE 9, e97620. doi: 10.1371/journal.pone.0097620.Google ScholarPubMed
Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.CrossRefGoogle ScholarPubMed
Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 17921797.CrossRefGoogle ScholarPubMed
Emden, H.F.V. & Harrington, R. (2007) Aphids as Crop Pests. Oxford, UK, CAB International.CrossRefGoogle Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit 1 from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294297.Google Scholar
Foottit, R.G., Maw, H.E.L., Von Dohlen, C.D. & Hebert, P.D.N. (2008) Species identification of aphids (Insecta: Hemiptera: Aphididae) through DNA barcodes. Molecular Ecology Resources 8, 11891201.CrossRefGoogle ScholarPubMed
Foottit, R.G., Maw, H.E.L. & Pike, K.S. (2009) DNA barcodes to explore diversity in aphids (Hemiptera: Aphididae and Adelgidae). Redia 92, 8791.Google Scholar
Hebert, P.D.N. & Gregory, T.R. (2005) The promise of DNA barcoding for taxonomy. Systematic Biology 54, 852859.CrossRefGoogle ScholarPubMed
Hebert, P.D.N., Cywinska, A., Ball, S.L. & deWaard, J.R. (2003 a) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London Series B: Biological Sciences 270, 313322.CrossRefGoogle ScholarPubMed
Hebert, P.D.N., Ratnasingham, S. & deWaard, J.R. (2003 b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London Series B: Biological Sciences 270, S96S99.CrossRefGoogle ScholarPubMed
Karel, A.K. & Autrique, A. (1989) Insects and other pests in Africa. pp. 455504 in Schwartz, H.F. & Pastor-Corrales, M.A. (Eds) Bean Production Problems in the Tropics. Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia.Google Scholar
Khamis, F.M., Masiga, D.K., Mohamed, S.A., Salifu, D., de Meyer, M. & Ekesi, S. (2012) Taxonomic identity of the invasive fruit fly pest, Bactrocera invadens: concordance in morphometry and DNA barcoding. PLoS ONE 7, e44862. doi: 10.1371/journal.pone.0044862.CrossRefGoogle ScholarPubMed
Kim, H., Hoelmer, K.A., Lee, W., Kwon, Y. & Lee, S. (2010) Molecular and morphological identification of the soybean aphid and other Aphis species on the primary host Rhamnus davurica in Asia. Annals of the Entomological Society of America 103, 532543.CrossRefGoogle Scholar
Lee, W., Kim, H., Lim, J., Choi, H-R., Kim, Y., Kim, Y-S., Ji, J-Y., Foottit, R.G. & Lee, S. (2011) Barcoding aphids (Hemiptera: Aphididae) of the Korean Peninsula: updating the global data set. Molecular Ecology Resources 11, 3237.CrossRefGoogle ScholarPubMed
Librado, P. & Rozas, J. (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 14511452.CrossRefGoogle ScholarPubMed
Lozier, J.D., Foottit, R.G., Miller, G.L., Mills, N.J. & Roderick, G.K. (2008) Molecular and morphological evaluation of the aphid genus Hyalopterus Koch (Insecta: Hemiptera: Aphididae), with a description of a new species. Zootaxa 1688, 119.CrossRefGoogle Scholar
Masahiro, M.H.O., Kotsubo, Y., Tajima, R. & Hinomoto, N. (2008). Restriction fragment length polymorphism catalog for molecular identification of Japanese Tetranychus spider mites (Acari: Tetranychidae). Journal of Economic Entomology 101, 11671175.Google Scholar
Miller, G.L. & Foottit, R.G. (2009) The taxonomy of crop pests: the aphids. pp. 463473 in Foottit, R.G. & Adler, P.H. (Eds) Insect Biodiversity: Science and Society. Oxford, Wiley-Blackwell.CrossRefGoogle Scholar
Nyambo, B. & Löhr, B. (2005) The role and significance of farmer participation in biocontrol-based IPM for brassica crops in East Africa. pp. 290301 in Hoddle, M.S. (Ed.) Proceedings of the Second International Symposium on Biological Control of Arthropods, vol. I, 12–16 September 2005, Davos, Switzerland.Google Scholar
Peakall, R. & Smouse, P.E. (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288295.CrossRefGoogle Scholar
Piffaretti, J., Vanlerberghe-Masutti, F., Tayeh, A., Clamens, A.L., Cœur d'Acier, A. & Jousselin, E. (2012) Molecular phylogeny reveals the existence of two sibling species in the aphid pest Brachycaudus helichrysi (Hemiptera: Aphididae). Zoologica Scripta 41, 266280.CrossRefGoogle Scholar
Raboudi, F., Marrakchi, M. & Makni, M. (2002) Polymerase chain reaction-restriction fragment length polymorphism of ribosomal internal transcribed spacer region analysis on analysis on polyacrylamide gel electrophoresis reveals two haplotypes coexisting in Myzus persicae . Electrophoresis 23, 186188.Google Scholar
Rebijith, K.B., Asokan, R., Krishna, V., Kumar, N.K.K. & Ramamurthy, V.V. (2012) Development of species-specific markers and molecular differences in mitochondrial and nuclear DNA sequences of Aphis gossypii and Myzus persicae (Hemiptera: Aphididae). Florida Entomologist 95, 674682.CrossRefGoogle Scholar
Rebijith, K.B., Asokan, R., Kumar, N.K.K., Krishna, V., Chaitanya, B.N. & Ramamurthy, V.V. (2013) DNA barcoding and elucidation of cryptic aphid species (Hemiptera: Aphididae) in India. Bulletin of Entomological Research 103, 601610.CrossRefGoogle ScholarPubMed
Sæthre, M-G., Godonou, I., Hofsvang, T., Tepa-Yotto, G.T. & James, B. (2011) Aphids and their natural enemies in vegetable agroecosystems in Benin. International Journal of Tropical Insect Science 31, 103117.CrossRefGoogle Scholar
Shufran, K.A. (2003) Polymerase chain reaction-restriction fragment length polymorphisms identity mtDNA haplotypes of greenbug (Hemiptera: Aphidida). Journal of the Kansas Entomological Society 76, 551556.Google Scholar
Shufran, K.A. & Puterka, G.J. (2011) DNA barcoding to identify all life stages of holocyclic cereal aphids (Hemiptera: Aphididae) on wheat and other poaceae. Annals of the Entomological Society of America 104, 3942, doi: 10.1603/AN10129.CrossRefGoogle Scholar
Singh, S.R. & Allen, D.J. (1980) Pests, diseases, resistance and protection of Vigna unguiculata (L.) Walp. pp. 419433 in Summerfield, R.J. & Bunting, H.A. (Eds) Advances in Legumes Science. Royal Botanic Gardens, Kew, Ministry of Agriculture, Fisheries and Food, London, England.Google Scholar
Sithanantham, S., Nyarko, K.A., Ogutu, W., Chongoti, L., Kibata, G.N., Ouko, J.O., Mukindia, C., Agong, S.G., Seif, A.A. & Loehr, B. (1998) Stakeholder consultation towards initiatives for improved pest management in export vegetables in Kenya. pp. 258–267 in Proceedings of the 2nd Biennial Crop Protection Conference. Kenya: Crop Protection Research in Kenya, KARI-ODA.Google Scholar
Spence, N.J., Phiri, N.A., Hughes, S.L., Mwaniki, A., Simons, S., Oduor, G., Chacha, D., Kuria, A., Ndirangu, S., Kibata, G.N. & Marris, G.C. (2007) Economic impact of turnip mosaic virus, cauliflower mosaic virus and beet mosaic virus in three Kenyan vegetables. Plant Pathology 56, 317323.CrossRefGoogle Scholar
Stamatakis, A. (2014) RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 13121313.CrossRefGoogle ScholarPubMed
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 27252729.CrossRefGoogle ScholarPubMed
Valenzuela, I., Hoffmann, A.A., Malipatil, M.B., Ridland, P.M. & Weeks, A.R. (2007) Identification of aphid species (Hemiptera: Aphididae: Aphidinae) using a rapid polymerase chain reaction restriction fragment length polymorphism method based on the cytochrome oxidase subunit I gene. Australian Journal of Entomology 46, 305312.CrossRefGoogle Scholar
Valenzuela, I., Eastop, V.F., Ridland, P.M. & Weeks, A.R. (2009) Molecular and morphometric data indicate a new species of the aphid Genus Rhopalosiphum (Hemiptera: Aphididae). Annals of the Entomological Society of America 102, 914924.CrossRefGoogle Scholar
Virgilio, M., Backeljau, T., Nevado, B. & Meyer, M.D. (2010) Comparative performances of DNA barcoding across insect orders. BMC Bioinformatics 11, 206216.CrossRefGoogle ScholarPubMed
Wang, J-F., Jiang, L-Y. & Qiao, G-X. (2011) Use of a mitochondrial COI sequence to identify species of the subtribe Aphidina (Hemiptera, Aphididae). Zookeys 122, 117.Google Scholar
Waterhouse, A.M., Procter, J.B., Martin, D.M.A., Clamp, M. & Barton, G.J. (2009) Jalview version 2: a multiple sequence alignment and analysis workbench. Bioinformatics 25, 11891191, doi: 10.1093/bioinformatics/btp033.CrossRefGoogle ScholarPubMed
Worf, G.L., Heimann, M.F. & Pellitteri, P.J. (1995) Sooty Mold. pp. 2. University of Wisconsin Cooperative Extension Publication. Madison Wisconsin A2637.Google Scholar
Yeh, H.T., Ko, C.C., Hsu, T.C. & Shih, C.J. (2005) PCR-RFLP technique for identification of Rhopalosiphum (Aphididae). Formosan Entomologist 25, 3346.Google Scholar
Zhang, H-H., Huang, X-L., Jiang, L.Y. & Qiao, G-X. (2010) Subspecies differentiation of Aphis fabae Scopoli (Hemiptera: Aphididae) based on morphological and molecular data. Acta Zootaxonomic Sinica 35, 537547.Google Scholar