Hostname: page-component-669899f699-ggqkh Total loading time: 0 Render date: 2025-04-30T01:14:52.569Z Has data issue: false hasContentIssue false

Identification and validation of reference genes for RT-qPCR analysis in Sclerodermus guani (Hymenoptera: Bethylidae)

Published online by Cambridge University Press:  07 October 2024

Rina Zhao
Affiliation:
Department of Entomology, School of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
Xiaomeng Guo
Affiliation:
Department of Entomology, School of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China Research Institute of Agricultural Sciences of Zhenjiang city, Zhenjiang, Jiangsu Province, PR China
Ling Meng
Affiliation:
Department of Entomology, School of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
Baoping Li*
Affiliation:
Department of Entomology, School of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
*
Corresponding author: Baoping Li; Email: [email protected]

Abstract

Gene expression studies in organisms are often conducted using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), and the accuracy of RT-qPCR results relies on the stability of reference genes. We examined ten candidate reference genes in Sclerodermus guani, a parasitoid wasp that is a natural enemy of long-horned beetle pests in forestry, including ACT, EF1α, Hsc70, Hsp70, SRSF7, α-tubulin, RPL7A, 18S, 28S, and SOD1, regarding variable biotic and abiotic factors such as body part, life stage, hormone, diet, and temperature. Data were analysed using four dedicated algorithms (ΔCt, BestKeeper, NormFinder, and geNorm) and one comparative tool (RefFinder). Our results showed that the most stable reference genes were RPL7A and EF1α regarding the body part, SRSF7 and Hsc70 regarding the diet, RPL7A and α-tubulin regarding the hormone, SRSF7 and RPL7A regarding the life stage, and SRSF7 and α-tubulin regarding temperature. To ascertain the applicability of specific reference genes, the expression level of the target gene (ACPase) was estimated regarding the body part using the most stable reference genes, RPL7A and EF1α, and the least stable one, SOD1. The highest expression level of ACPase was observed in the abdomen, and the validity of RPL7A and EF1α was confirmed. This study provides, for the first time, an extensive list of reliable reference genes for molecular biology studies in S. guani.

Type
Research Paper
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anand, A and Srivastava, PK (2012) A molecular description of acid phosphatase. Applied Biochemistry and Biotechnology 167, 21742197.CrossRefGoogle ScholarPubMed
Bai, Y, , YN, Zeng, M, Jia, PY, Lu, HN, Zhu, YB, Li, S, Cui, YY and Luan, YX (2020) Selection of reference genes for normalization of gene expression in Thermobia domestica (Insecta: Zygentoma: Lepismatidae). Genes (Basel) 12, 21.CrossRefGoogle ScholarPubMed
Bunnell, TM, Burbach, BJ, Shimizu, Y and Ervasti, JM (2011) β-Actin specifically controls cell growth, migration, and the G-actin pool. Molecular Biology of the Cell 22, 40474058.CrossRefGoogle ScholarPubMed
Bustin, SA, Benes, V, Garson, JA, Hellemans, J, Huggett, J, Kubista, M, Mueller, R, Nolan, T, Pfaffl, MW, Shipley, GL, Vandesompele, J and Wittwer, CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry 55, 611622.CrossRefGoogle ScholarPubMed
Chapman, JR and Waldenström, J (2015) With reference to reference genes: a systematic review of endogenous controls in gene expression studies. PLoS One 10, e0141853.CrossRefGoogle Scholar
Cheng, DF, Zhang, ZL, He, XF and Liang, GW (2013) Validation of reference genes in Solenopsis invicta in different developmental stages, castes and tissues. PLoS One 8, e57718.CrossRefGoogle ScholarPubMed
Derveaux, S, Vandesompele, J and Hellemans, J (2010) How to do successful gene expression analysis using real-time PCR. Methods 50, 227230.CrossRefGoogle Scholar
Dheda, K, Huggett, J, Chang, JS, Kim, L, Bustin, S, Johnson, MA, Rook, G and Zumla, A (2005) The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Analytical Biochemistry 344, 141143.CrossRefGoogle ScholarPubMed
Gao, XK, Zhang, S, Luo, JY, Wang, CY, Lu, LM, Zhang, LJ, Zhu, XZ, Wang, L, Lu, H and Cui, JJ (2017) Comprehensive evaluation of candidate reference genes for gene expression studies in Lysiphlebia japonica (Hymenoptera: Aphidiidae) using RT-qPCR. Gene 637, 211218.CrossRefGoogle ScholarPubMed
Guénin, S, Mauriat, M, Pelloux, J, van Wuytswinkel, O, Bellini, C and Gutierrez, L (2009) Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. Journal of Experimental Botany 60, 487493.CrossRefGoogle ScholarPubMed
Guo, CF, Pan, HP, Zhang, LH, Ou, D, Lu, ZT, Khan, MM and Qiu, BL (2020) Comprehensive assessment of candidate reference genes for gene expression studies using RT-qPCR in Tamarixia radiata, a predominant parasitoid of Diaphorina citri. Genes (Basel) 11, 1178.CrossRefGoogle ScholarPubMed
Huggett, J, Dheda, K, Bustin, S and Zumla, A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes & Immunity 6, 279284.CrossRefGoogle ScholarPubMed
Hunter, T and Garrels, JI (1977) Characterization of the mRNAs for α-, β- and γ-actin. Cell 12, 767781.CrossRefGoogle ScholarPubMed
Huo, L, Bai, X, Che, W, Ning, S, , L, Zhang, L, Zhou, J and Dong, H (2022) Selection and evaluation of RT-qPCR reference genes for expression analysis in the tiny egg parasitoid wasp, Trichogramma dendrolimi Matsumura (Hymenoptera: Trichogrammatidae). Journal of Asia-Pacific Entomology 25, 101883.CrossRefGoogle Scholar
Li, QY, Li, ZL, Lu, MX, Cao, SS and Du, YZ (2019) Selection of valid reference genes for quantitative real-time PCR in Cotesia chilonis (Hymenoptera: Braconidae) exposed to different temperatures. PLoS One 14, e0226139.CrossRefGoogle ScholarPubMed
Liu, NY, Fan, XH, Zhang, ZQ, Wu, GX and Zhu, JY (2017) Molecular and enzymatic characterization of acid phosphatase from venom of Scleroderma guani. Journal of Asia-Pacific Entomology 20, 14341441.CrossRefGoogle Scholar
Liu, ZX, Xiao, JJ, Xia, Y, Wu, QF, Zhao, C and Li, DS (2022) Selection and validation of reference genes for RT-qPCR-based analyses of Anastatus japonicus Ashmead (Hymenoptera: Helicopteridae). Frontiers in Physiology 13, 1046204.CrossRefGoogle ScholarPubMed
, J, Yang, CX, Zhang, YJ and Pan, HP (2018) Selection of reference genes for the normalization of RT-qPCR data in gene expression studies in insects: a systematic review. Frontiers in Physiology 9, 1560.CrossRefGoogle ScholarPubMed
Petibon, C, Ghulam, MM, Catala, M and Abou Elela, S (2021) Regulation of ribosomal protein genes: an ordered anarchy. Wiley Interdisciplinary Reviews-RNA 12, e1632.CrossRefGoogle ScholarPubMed
R Development Core Team (2023) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Ruan, WJ and Lai, MD (2007) Actin, a reliable marker of internal control? Clinica Chimica Acta 385, 15.CrossRefGoogle ScholarPubMed
Selvey, S, Thompson, EW, Matthaei, K, Lea, RA, Irving, MG and Griffiths, LR (2001) β-Actin – an unsuitable internal control for RT-PCR. Molecular & Cellular Probes 15, 307311.CrossRefGoogle ScholarPubMed
Shakeel, M, Rodriguez, A, Tahir, UB and Jin, F (2018) Gene expression studies of reference genes for quantitative real-time PCR: an overview in insects. Biotechnology Letters 40, 227236.CrossRefGoogle ScholarPubMed
Shen, CH, Peng, LJ, Zhang, YX, Zeng, HR, Yu, HF, Jin, L and Li, GQ (2022) Reference genes for expression analyses by qRT-PCR in Phthorimaea operculella (Lepidoptera: Gelechiidae). Insects 13, 140.CrossRefGoogle ScholarPubMed
Tang, XY, Meng, L, Kapranas, A, Xu, FY, Hardy, ICW and Li, BP (2014) Mutually beneficial host exploitation and ultra-biased sex ratios in quasisocial parasitoids. Nature Communications 5, 4942.CrossRefGoogle ScholarPubMed
Tang, JW, Xie, YQ, Huang, JX, Zhang, L, Jiang, WY, Li, ZY and Bian, JL (2022) A critical update on the strategies towards small molecule inhibitors targeting Serine/arginine-rich (SR) proteins and Serine/arginine-rich proteins related kinases in alternative splicing. Bioorganic & Medicinal Chemistry 70, 116921.CrossRefGoogle ScholarPubMed
Vandesompele, J, De Preter, K, Pattyn, F, Poppe, B, Van Roy, N, De Paepe, A and Speleman, F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3, 112.CrossRefGoogle ScholarPubMed
Wang, SS, Tian, JC, Lu, YH, Xu, HX, Wang, XP and , ZX (2022) Screening for qRT-PCR reference genes in Trichogramma japonicum. Chinese Journal of Biological Control 38, 11561165.Google Scholar
Wilson, EO (1974) The Insect Societies. Cambridge, MA: Belknap Press of Harvard University.Google Scholar
Wu, CY, Huang, JM, Zhao, YJ, Xu, ZW and Zhu, JY (2020) Venom serine proteinase homolog of the ectoparasitoid Scleroderma guani impairs host phenoloxidase cascade. Toxicon 183, 2935.CrossRefGoogle ScholarPubMed
Xie, LC, Tian, JC, Lu, YH, Xu, HX, Zang, LS, Lu, ZX and Jin, LH (2021) Selection of reference genes for RT-qPCR analysis in Trichogramma chilonis (Hymenoptera: Trichogrammatidae). Journal of Asia-Pacific Entomology 24, 679687.CrossRefGoogle Scholar
Yan, X, Zhang, YB, Xu, KK, Wang, YW and Yang, WJ (2021) Validation of reference genes for gene expression analysis in Tuta absoluta Meyrick (Lepidoptera: Gelechiidae). Insects 12, 589.CrossRefGoogle ScholarPubMed
Yang, ZQ, Wang, XY and Zhang, YN (2014) Recent advances in biological control of important native and invasive forest pests in China. Biological Control 68, 117128.CrossRefGoogle Scholar
Yang, WB, Wu, GX, Wu, DH, Yuan, YQ, Qin, XP, Bao, Q and Tian, CJ (2018) Influence of parasitoid-host ratio on the mass rearing of Sclerodermus guani. Chinese Journal of Biological Control 34, 234239.Google Scholar
Supplementary material: File

Zhao et al. supplementary material 1

Zhao et al. supplementary material
Download Zhao et al. supplementary material 1(File)
File 649.8 KB
Supplementary material: File

Zhao et al. supplementary material 2

Zhao et al. supplementary material
Download Zhao et al. supplementary material 2(File)
File 280.3 KB