Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T15:26:05.777Z Has data issue: false hasContentIssue false

Identification and characterization of anonymous nuclear markers for the double-striped cockroach, Blattella bisignata

Published online by Cambridge University Press:  15 June 2012

Q.-P. Ren
Affiliation:
Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
Z. Fan
Affiliation:
Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
X.-M. Zhou
Affiliation:
Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
G.-F. Jiang*
Affiliation:
Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
Y.-T. Wang
Affiliation:
Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
Y.-X. Liu
Affiliation:
Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
*
*Author for correspondence Fax: +86-2585891163 E-mail: [email protected], [email protected]

Abstract

During the last decade, multilocus analysis has gradually become a powerful tool for the studies of population genetics and phylogeography. The double-striped cockroach, Blattella bisignata, is endemic to southeast Asia, and there is currently little genetic information available for the species. We chose it as the target species to investigate a biodiversity hotspot in southwest China. Here, we report the identification and characterization of 11 single-copy anonymous nuclear markers with an average length of 378bp. These loci, isolated from a genomic library of B. bisignata, can amplify in two additional Blattella species (B. germanica and B. lituricollis). While testing these markers in representative species of Blattellidae, Blattidae and Epilampridae, some of them can cross-amplify successfully. After sequencing 30 individuals collected from southern China per locus, we found relatively high variability (approximately 3.6 SNPs per 100bp). Finally, a small-scale study was also performed to show that these markers do indeed fulfill the expectations as phylogeographic markers.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdi, H. (2007) Bonferroni and Šidák corrections for multiple comparisons. pp. 19in Salkind, N.J. (Ed.) Encyclopedia of Measurement and Statistics. Thousand Oaks, CA, USA, Sage.Google Scholar
Amaral, A.R., Silva, M.C., Moeller, L.M., Beheregaray, L.B. & Coelho, M.M. (2010) Anonymous nuclear markers for cetacean species. Conservation Genetics 11, 11431146.Google Scholar
Augustinos, A.A., Asimakopoulou, A.K., Papadopoulos, N.T. & Bourtzis, K. (2011) Cross-amplified microsatellites in the European cherry fly, Rhagoletis cerasi: medium polymorphic–highly informative markers. Bulletin of Entomological Research 101, 4552.Google Scholar
Bachtrog, D., Weiss, S., Zangerl, B., Brem, G. & Schlotterer, C. (1999) Distribution of dinucleotide microsatellites in the Drosophila melanogaster genome. Molecular Biology and Evolution 16, 602610.CrossRefGoogle ScholarPubMed
Booth, W., Bogdanowicz, S.M., Prodohl, P.A., Harrison, R.G., Schal, C. & Vargo, E.L. (2007) Identification and characterization of 10 polymorphic microsatellite loci in the German cockroach, Blattella germanica. Molecular Ecology Notes 7, 648650.Google Scholar
Booth, W., Santangelo, R.G., Vargo, E.L., Mukha, D.V. & Schal, C. (2011) Population genetic structure in German cockroaches (Blattella germanica): differentiated islands in an agricultural landscape. Journal of Heredity 102, 175183.Google Scholar
Carstens, B.C. & Knowles, L.L. (2006) Variable nuclear markers for Melanoplus oregonensis identified from the screening of a genomic library. Molecular Ecology Notes 6, 683685.CrossRefGoogle Scholar
Chinn, W.G. & Gemmell, N.J. (2004) Adaptive radiation within New Zealand endemic species of the cockroach genus Celatoblatta Johns (Blattidae): a response to Plio-Pleistocene mountain building and climate change. Molecular Ecology 13, 15071518.Google Scholar
Clarke, K.R. & Gorley, R.N. (2001) Primer v5: user manual/tutorial. Plymouth, MA, USA, Primer-E, Ltd.Google Scholar
Crissman, J.R., Booth, W., Santangelo, R.G., Mukha, D.V., Vargo, E.L. & Schal, C. (2010) Population genetic structure of the German cockroach (Blattodea: Blattellidae) in apartment buildings. Journal of Medical Entomology 47, 553564.Google Scholar
de Bruyn, M., Grail, W. & Carvalho, G.R. (2011) Anonymous nuclear markers for the Blue Panchax killifish (Aplocheilus panchax). Conservation Genetics Resources 3, 5355.CrossRefGoogle Scholar
Hamm, C.A. (2012) Development of polymorphic anonymous nuclear DNA markers for the endangered Mitchell's satyr butterfly, Neonympha mitchellii mitchellii (Lepidoptera: Nymphalidae). Conservation Genetics Resources 4, 127128.Google Scholar
Hare, M.P. (2001) Prospects for nuclear phylogeography. Trends in Ecology and Evolution 16, 700706.Google Scholar
Hedrick, P.W. (2005) Genetics of Populations. Sudbury, MA, USA, Jones and Bartlett.Google Scholar
Henshaw, M.T., Toth, A.L. & Young, T.J. (2011) Development of new microsatellite loci for the genus Polistes from publicly available expressed sequence tag sequences. Insects Sociaux 58, 581585.CrossRefGoogle Scholar
Hudson, R.R. & Kaplan, N.L. (1985) Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111, 147164.Google Scholar
Ji, Y.Q., Wu, D.D., Wu, G.S., Wang, G.D. & Zhang, Y.P. (2011) Multi-Locus analysis reveals a different pattern of genetic diversity for mitochondrial and nuclear DNA between wild and domestic pigs in east Asia. PLoS One 6, e26416.Google Scholar
Knowles, L.L. & Carstens, B.C. (2007) Estimating a geographically explicit model of population divergence. Evolution 61, 477493.CrossRefGoogle ScholarPubMed
Lee, J. & Edwards, S. (2008) Divergence across Australia's carpentarian barrier: statistical phylogeography of the redbacked fairy wren (Malurus melanocephalus). Evolution 62, 31173134.Google Scholar
Librado, P. & Rozas, J. (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 14511452.Google Scholar
Maekawa, K., Kon, M., Matsumoto, T., Kitade, O. & Araya, K. (2007) Phylogeography of the asian wood-feeding cockroach Salganea raggei Roth (Blattaria: Blaberidae) based on the mitochondrial COII gene. Oriental Insects 41, 317325.Google Scholar
Mukha, D.V., Kagramanova, A.S., Lazebnaya, I.V., Lazebnnyi, O.E., Vargo, E.L. & Schal, C. (2007) Intraspecific variation and population structure of the German cockroach, Blattella germanica, revealed with RFLP analysis of the non-transcribed spacer region of ribosomal DNA. Medical and Veterinary Entomology 21, 132140.Google Scholar
Noonan, B.P. & Yoder, A.D. (2009) Anonymous nuclear markers for Malagasy plated lizards (Zonosaurus). Molecular Ecology Resources 9, 402404.Google Scholar
Posada, D. & Crandall, K. (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817818.Google Scholar
Raychoudhury, R., Grillenberger, B.K., Gadau, J., Bijlsma, R., van de Zande, L., Werren, J.H. & Beukeboom, L.W. (2010) Phylogeography of Nasonia vitripennis (Hymenoptera) indicates a mitochondrial–Wolbachia sweep in North America. Heredity 104, 318326.Google Scholar
Rogers, A.R. (1995) Genetic evidence for a Pleistocene population explosion. Evolution 49, 608615.Google Scholar
Sambrook, J., Fritsch, E.F. & Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. 2nd edn. New York, USA, Cold Spring Harbor Laboratory Press.Google Scholar
Schlotterer, C. (2000) Evolutionary dynamics of microsatellite DNA. Chromosoma 109, 365371.Google Scholar
Selkoe, K.A. & Toonen, R.J. (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecology Letters 9, 615629.Google Scholar
Sinama, M., Dubut, V., Costedoat, C., Gilles, A., Junker, M., Malausa, T., Martin, J.F., Neve, G., Pech, N., Schmitt, T., Zimmermann, M. & Meglecz, E. (2011) Challenges of microsatellite development in Lepidoptera: Euphydryas aurinia (Nymphalidae) as a case study. European Journal of Entomology 108, 262266.Google Scholar
Swofford, D.L. (2003) PAUP* Phylogenetic analysis using parsimony (*and other methods). Version 4. Sunderland, MA, USA, Sinauer Associates.Google Scholar
Tajima, F. (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585595.Google Scholar
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.Google Scholar
Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.Google Scholar
Thomson, R.C., Wang, L.J. & Johnson, I.R. (2010) Genome-enabled development of DNA markers for ecology, evolution and conservation. Molecular Ecology 19, 21842195.Google Scholar
Williams, M.A.J., Dunkerley, D.L., de Deckker, P., Kershaw, A.P. & Chappel, J. (1998) Quaternary Environments. London, UK, Arnold.Google Scholar