Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T17:44:14.343Z Has data issue: false hasContentIssue false

How do honeybees use their magnetic compass? Can they see the North?

Published online by Cambridge University Press:  07 February 2012

T. Válková
Affiliation:
Department of Animal Physiology and Immunology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
M. Vácha*
Affiliation:
Department of Animal Physiology and Immunology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
*
*Author for correspondence Fax: +420 549491420 E-mail: [email protected]

Abstract

While seeking food sources and routes back to their hive, bees make use of their advanced nervous and sensory capacities, which underlie a diverse behavioral repertoire. One of several honeybee senses that is both exceptional and intriguing is magnetoreception – the ability to perceive the omnipresent magnetic field (MF) of the Earth. The mechanism by which animals sense MFs has remained fascinating as well as elusive because of the intricacies involved, which makes it one of the grand challenges for neural and sensory biology. However, investigations in recent years have brought substantial progress to our understanding of how such magneto-receptor(s) may work. Some terrestrial animals (birds) are reported to be equipped even with a dual perception system: one based on diminutive magnetic particles – in line with the original model which has also always been hypothesized for bees – and the other one, as the more recent model describes, based on a sensitivity of some photochemical reactions to MF (radical-pair or chemical mechanism). The latter model postulates a close link to vision and supposes that the animals can see the position of the geomagnetic North as a visible pattern superimposed on the picture of the environment. In recent years, a growing body of evidence has shown that radical-pair magnetoreception might also be used by insects. It is realistic to expect that such evidence will inspire a re-examination and extension or confirmation of established views on the honeybee magnetic-compass mechanism. However, the problem of bee magnetoreception will not be solved at the moment that a receptor is discovered. On the contrary, the meaning of magnetoreception in insect life and its involvement in the orchestration of other senses is yet to be fully understood. The crucial question to be addressed in the near future is whether the compass abilities of the honeybee could suffer from radio frequency (RF) smog accompanying modern civilization and whether the fitness of this dominant pollinator might be affected by RF fields. The goal of this review is to provide an overview of the path that the behavioral research on honeybee magnetoreception has taken and to discuss it in the context of contemporary data obtained on other insects.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraçado, L.G., Esquivel, D.M.S., Alves, O.C. & Wajnberg, E. (2005) Magnetic material in head, thorax, and abdomen of Solenopsis substituta ants: a ferromagnetic resonance study. Journal of Magnetic Resonance 175, 309316.CrossRefGoogle ScholarPubMed
Alves, O.C., Wajnberg, E., de Oliveira, J.F. & Esquivel, D.M.S. (2004) Magnetic material arrangement in oriented termites: a magnetic resonance study. Journal of Magnetic Resonance 168, 246251.CrossRefGoogle ScholarPubMed
Arendse, M.C. (1978) Magnetic field detection is distinct from light detection in the invertebrates Tenebrio and Talitrus. Nature 274, 358362.CrossRefGoogle Scholar
Cadiou, H. & McNaughton, P.A. (2010) Avian magnetite-based magnetoreception: a physiologist's perspective. Journal of Royal Society Interface 7, S193S205.CrossRefGoogle ScholarPubMed
Cashmore, A.R., Jarillo, J.A., Wu, Y.-J. & Dongmei, L. (1999) Cryptochromes: Blue light receptors for plants and animals. Science 30, 760765.CrossRefGoogle Scholar
Collett, T.S. & Baron, J. (1994) Biological compasses and the coordinate frame of landmark memories in honeybees. Nature 368, 137140.CrossRefGoogle Scholar
Davila, A.F., Fleissner, G., Winklhofer, M. & Petersen, N. (2003) A new model for a magnetoreceptor in homing pigeons based on interacting clusters of superparamagnetic magnetite. Physics and Chemistry of the Earth 28, 647652.CrossRefGoogle Scholar
DeJong, D. (1982) The orientation of comb-building by honeybees. Journal of Comparative Physiology A 147, 495501.CrossRefGoogle Scholar
Dommer, D.H., Gazzolo, P.J, Painter, M.S. & Phillips, J.B. (2008) Magnetic compass orientation by larval Drosophila melanogaster. Journal of Insect Physiology 54, 719726.CrossRefGoogle ScholarPubMed
Dyer, F.C. & Gould, J.L. (1981) Honey bee orientation: a backup system for cloudy days. Science 214, 10411042.CrossRefGoogle ScholarPubMed
Esquivel, D.M.S., Wajnberg, E., Cernicchiaro, G.R., Acosta-Avalos, D. & Garcia, B.E. (2002) Magnetic material arrangement in Apis mellifera abdomens. Materials Research Society Symposium Proceedings 724, N7.2.1N7.2.4.CrossRefGoogle Scholar
Gegear, R.J., Casselman, A., Waddell, S. & Reppert, S.M. (2008) Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 454, 10141018.CrossRefGoogle ScholarPubMed
Gegear, R.J., Foley, L.E., Casselman, A. & Reppert, S.M. (2010) Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature 463, 804807.CrossRefGoogle ScholarPubMed
Gould, J.L. (2010) Magnetoreception. Current Biology 20, 431435.CrossRefGoogle ScholarPubMed
Gould, J.L., Kirschvink, J.L. & Deffeyes, K.S. (1978) Bees have magnetic remanence. Science 201, 10261028.CrossRefGoogle ScholarPubMed
Gould, J.L., Kirchvink, J.L., Deffeyes, K.S. & Brines, M.L. (1980) Orientation of demagnetized bees. Journal of Experimental Biology 86, 19.CrossRefGoogle Scholar
Holland, R.A. (2010) Differential effects of magnetic pulses on the orientation of naturally migrating birds. Journal of Royal Society Interface 7, 16171625.CrossRefGoogle ScholarPubMed
Holland, R.A., Kirschvink, J.L., Doak, T.G. & Wikelski, M. (2008) Bats use magnetite to detect the Earth's magnetic field. PLOS 3, e1676.CrossRefGoogle ScholarPubMed
Horridge, G.A. (2009) What does the Honeybee See? And how do we Know? A Critique of Scientific Reason. ANU E Press, Canberra, Australia.CrossRefGoogle Scholar
Hsu, C.Y. & Chan, Y.P. (2011) Identification and Localization of Proteins Associated with Biomineralization in the Iron Deposition Vesicles of Honeybees (Apis mellifera). PLoS ONE 6, e19088.CrossRefGoogle ScholarPubMed
Hsu, C.Y. & Li, C.W. (1993) The Ultrastructure and Formation of Iron Granules in the Honeybee (Apis mellifera). Journal of Experimental Biology 180, 113.CrossRefGoogle Scholar
Hsu, C.Y., Ko, F.Y., Li, C.W., Fann, K. & Lue, J.T. (2007) Magnetoreception system in honeybees (Apis mellifera). PLoS ONE 2, 395406.CrossRefGoogle ScholarPubMed
Irwin, W.P. & Lohmann, K.J. (2005) Disruption of magnetic orientation in hatchling loggerhead sea turtles by pulsed magnetic fields. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology 191, 475480.CrossRefGoogle ScholarPubMed
Jensen, K.K. (2010) Light-dependent orientation responses in animals can be explained by a model of compass cue integration. Journal of Theoretical Biology 262, 129141.CrossRefGoogle Scholar
Johnsen, S. & Lohmann, K.J. (2005) The physics and neurobiology of magnetoreception. Nature Reviews Neuroscience 6, 703712.CrossRefGoogle ScholarPubMed
Johnsen, S. & Lohman, K.J. (2008) Magnetoreception in animals. Physics Today 61, 2935.CrossRefGoogle Scholar
Kirschvink, J.L. (1982) Birds, bees and magnetism: A new look at the old problem of magnetoreception. Trends Neurosciences 5, 160167.CrossRefGoogle Scholar
Kirschvink, J.L. (1996) Microwave absorption by magnetite: A possible mechanism for coupling nonthermal levels of radiation to biological systems. Bioelectromagnetics 17, 187194.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Kirschvink, J.L. & Kobayashi-Kirschvink, A. (1991) Is geomagnetic sensitivity real? Replication of the Walker-Bitterman magnetic conditioning experiment in honey bees. American Zoologist 31, 169185.CrossRefGoogle Scholar
Kirschvink, J.L., Padmanabha, S., Boyce, C.K. & Oglesby, J. (1997) Measurement of the threshold sensitivity of honeybees to weak, extremely low-frequency magnetic fields. Journal of Experimental Biology 200, 13631368.CrossRefGoogle ScholarPubMed
Kirschvink, J.L., Winklhofer, M. & Walker, M.M. (2010) Biophysics of magnetic orientation: strengthening the interface between theory and experimental design. Journal of Royal Society Interface 7, S179S191.CrossRefGoogle ScholarPubMed
Leucht, T. (1984) Responses to light under varying magnetic conditions in the honeybee, Apis mellifica. Journal of Comparative Physiology A 154, 865870.CrossRefGoogle Scholar
Lindauer, M. & Martin, H. (1968) Die Schwereorientierung der Bienen unter dem Einfluss des Erdmagnetfeldes. Zeitschrift fur Vergleichende Physiology 60, 219243.CrossRefGoogle Scholar
Lindauer, M. & Martin, H. (1972) Magnetic effects on dancing bees. pp. 559567in Galler, S.R., Schmidt-Koenig, R., Jacobs, G.J. & Belleville, R.E. (Eds) Animal Orientation and Navigation. US Government Printing Office, Washington, DC., USAGoogle Scholar
Liedvogel, M. & Mouritsen, H. (2010) Cryptochromes – a potential magnetoreceptor: what do we know and what do we want to know? Journal of Royal Society Interface 7, S147S162.CrossRefGoogle ScholarPubMed
Lucano, M.J., Cernhicchiaro, G., Wajnberg, E. & Esquivel, D.M.S. (2006) Stingless bee antennae: a magnetic sensory organ? Biometals 19, 295300.CrossRefGoogle ScholarPubMed
Martin, H. & Lindauer, M. (1977) Der Einfluß des Erdmagnetfeldes auf die Schwereorientierung der Honigbiene (Apis mellifica). Journal of Comparative Physiology A 122, 145187.CrossRefGoogle Scholar
Menzel, R. & Giurfa, M. (2006) Dimensions of cognition in an insect, the honeybee. Behavioral and Cognitive Neuroscience Reviews 5, 2440.CrossRefGoogle Scholar
Muheim, R., Backman, J. & Akesson, S. (2002) Magnetic compass orientation in European robins is dependent on both wavelength and intensity of light. Journal of Experimental Biology 205, 38453856.CrossRefGoogle ScholarPubMed
Oliveira, J.F., Cernicchiaro, G., Winklhofer, M., Dutra, H., Oliveira, P.S., Esquivel, D.M.S. & Wajnberg, E. (2005) Comparative magnetic measurements on social insects. Journal of Magnetism and Magnetic Materials 289, 442444.Google Scholar
Phillips, J.B. & Borland, S.C. (1992) Behavioral evidence for the use of a light-dependent magnetoreception mechanism by a vertebrate. Nature 359, 142144.CrossRefGoogle Scholar
Phillips, J.B. & Sayeed, O. (1993) Wavelength-dependent effect of light on magnetic compass orientation in Drosophila melanogaster. Journal of Comparative Physiology 172, 303308.CrossRefGoogle ScholarPubMed
Phillips, J.B., Jorge, P.E. & Muheim, R. (2010) Light-dependent magnetic compass orientation in amphibians and insects: Candidate receptors and candidate molecular mechanisms. Journal of Royal Society Interface 7, 241256.CrossRefGoogle ScholarPubMed
Ritz, T., Adem, S. & Schulten, K. (2000) A model for vision-based magnetoreception in birds. Biophysical Journal 78, 707718.CrossRefGoogle Scholar
Ritz, T., Thalau, P., Phillips, J.B., Wiltschko, R. & Wiltschko, W. (2004) Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429, 177181.CrossRefGoogle ScholarPubMed
Ritz, T., Wiltschko, R., Hore, P.J., Rodgers, C.T., Stapput, K., Thalau, P., Timmel, C.R. & Wiltschko, W. (2009) Magnetic compass of birds is based on a molecule with optimal directional sensitivity. Biophysical Journal 96, 34513457.CrossRefGoogle ScholarPubMed
Ritz, T., Ahmad, M., Mouritsen, H., Wiltschko, R. & Wiltschko, W. (2010a) Photoreceptor-based magnetoreception: optimal design of receptor molecules, cells, and neuronal processing. Journal of Royal Society Interface 7, 135146.CrossRefGoogle ScholarPubMed
Ritz, T., Yoshii, T., Helfrich-Foerster, C. & Ahmad, M. (2010b) Cryptochrome A photoreceptor with the properties of a magnetoreceptor? Communicative & Integrative Biology 3, 2427.CrossRefGoogle ScholarPubMed
Riveros, A.J. & Srygley, R.B. (2008) Do leafcutter ants, Atta colombica, orient their path-integrated home vector with a magnetic compass? Animal Behaviour 75, 12731281.CrossRefGoogle Scholar
Rossel, S. & Wehner, R. (1984) Celestinal orientation in bees: the use of spectral cues. Journal of Comparative Physiology A 155, 605613.CrossRefGoogle Scholar
Rossel, S. & Wehner, R. (1986) Polarization vision in bees. Nature 323, 128131.CrossRefGoogle Scholar
Sharma, V.P. & Kumar, N.R. (2010) Changes in honeybee behaviour and biology under the influence of cellphone radiations. Current Science 98, 13761378.Google Scholar
Schmitt, D.E. & Esch, H.E. (1993) Magnetic orientation of honeybees in the laboratory. Naturwissenschaften 80, 4143.CrossRefGoogle Scholar
Solov'yov, I.A., Mouritsen, H. & Schulten, K. (2010) Acuity of a cryptochrome and vision-based magnetoreception system in birds. Biophysical Journal 99, 4049.CrossRefGoogle ScholarPubMed
Srinivasan, M.V. (2010) Honey bees as a model for vision, perception, and cognition. Annual Review of Entomology 55, 267284.CrossRefGoogle Scholar
Srinivasan, M.V., Zhang, S.W. & Reinhard, J. (2006) Small brains, smart minds: vision, perception, navigation and ‘cognition’ in insects. pp. 462493in Warrant, E.J. & Nilsson, D.E. (Eds) Invertebrate Vision. Cambridge University Press, Cambridge, UK.Google Scholar
Takagi, S. (1995) Paramagnetism of honeybees. Journal of the Physical Society of Japan 64, 43784381.CrossRefGoogle Scholar
Thalau, P., Ritz, T., Burda, H., Wegner, R.E. & Wiltschko, R. (2006) The magnetic compass mechanisms of birds and rodents are based on different physical principles. Journal of Royal Society Interface 3, 583587.CrossRefGoogle ScholarPubMed
Theobald, J.C., Greiner, B., Wcislo, W.T. & Warrant, E.J. (2006) Visual summation in night-flying sweat bees: a theoretical study. Vision Research 46, 22982309.CrossRefGoogle Scholar
Vácha, M. & Soukopová, H. (2004) Magnetic orientation in the mealworm beetle Tenebrio and the effect of light. Journal of Experimental Biology 207, 12411248.CrossRefGoogle ScholarPubMed
Vácha, M., Drštková, D. & Půžová, T. (2008a) Tenebrio beetles use magnetic inclination compass. Naturwissenschaften 95, 761765.CrossRefGoogle ScholarPubMed
Vácha, M., Půžová, T. & Drštková, D. (2008b) Effect of light wavelength spectrum on magnetic compass orientation in Tenebrio molitor. Journal of Comparative Physiology A 194, 853859.CrossRefGoogle ScholarPubMed
Vácha, M., Půžová, T. & Kvíčalová, M. (2009) Radio-frequency magnetic fields disrupt magnetoreception in American cockroach. Journal of Experimental Biology 212, 34733477.CrossRefGoogle ScholarPubMed
van der Schalie, E.A., Conte, F.E., Marz, K.E. & Green, C.B. (2007) Structure/function analysis of Xenopus cryptochromes 1 and 2 reveals differential nuclear localization mechanisms and functional domains important for interaction with and repression of CLOCKBMAL1. Molecular and Cellular Biology 27, 21202129.CrossRefGoogle ScholarPubMed
von Frisch, K. (1967) The Dance Language and Orientation of Bees. Harvard University Press, Cambridge, MA, USA.Google Scholar
Wajnberg, E., Cernicchiaro, G.R. & Esquivel, D.M.S. (2004) Antennae: the strongest magnetic part of the migratory ant. Biometals 17, 467470.CrossRefGoogle ScholarPubMed
Wajnberg, E., Acosta-Avalos, D., Alves, O.C., de Oliveira, J.F., Srygley, B.F. & Esquivel, D.M.S. (2010) Magnetoreception in eusocial insects: an update. Journal of Royal Society Interface 7, 207225.CrossRefGoogle ScholarPubMed
Walker, M.M. (1997) Magnetic orientation and the magnetic sense in Arthropods. pp. 187214in Lehrer, M. (Ed.) Orientation and Communication in Arthropods. Birkhauser Verlag, Basel, Switzerland.CrossRefGoogle Scholar
Walker, M.M. (2008) A model for encoding of magnetic field intensity by magnetite-based magnetoreceptor cells. Journal of Theoretical Biology 250, 8591.CrossRefGoogle Scholar
Walker, M.M. & Bitterman, M.E. (1985) Conditioned responding to magnetic fields by honeybees. Journal of Comparative Physiology A 157, 6771.CrossRefGoogle Scholar
Walker, M.M. & Bitterman, M.E. (1989a) Conditioning analysis of magnetoreception in honeybees. Bioelectromagnetics 10, 261275.CrossRefGoogle ScholarPubMed
Walker, M.M. & Bitterman, M.E. (1989b) Attached magnets impair magnetic field discrimination by honeybees. Journal of Experimental Biology 141, 447451.CrossRefGoogle Scholar
Walker, M.M. & Bitterman, M.E. (1989c) Honeybees can be trained to respond to very small changes in geomagnetic field sensitivity. Journal of Experimental Biology 145, 489494.CrossRefGoogle Scholar
Wiltschko, R. & Wiltschko, W. (2005) Magnetic orientation and magnetoreception in birds and other animals. Journal of Comparative Physiology A 191, 675693.CrossRefGoogle ScholarPubMed
Wiltschko, R. & Wiltschko, W. (2006) Magnetoreception. BioEssays 28, 157168.CrossRefGoogle ScholarPubMed
Wiltschko, W., Gesson, M., Stapput, K. & Wilstchko, R. (2004) Light-dependent magnetoreception in birds: interaction of at least two different receptors Naturwissenschaften 91, 130134.Google ScholarPubMed
Wiltschko, W., Munro, U., Ford, H. & Wiltschko, R. (2006) Bird navigation: what type of information does the magnetite-based receptor provide? Proceedings of the Royal Society, Series B 273, 28152820.Google ScholarPubMed
Wiltschko, R., Stapput, K., Bischof, H.-J. & Wiltschko, W. (2007) Light-dependent magnetoreception in birds: increasing intensity of monochromatic light changes the nature of the response. Frontiers in Zoology 4(1), 5.CrossRefGoogle ScholarPubMed
Yoshii, T., Ahmad, M. & Helfrich-Förster, C. (2009) Cryptochrome mediates light-dependent magnetosensitivity of Drosophila's circadian clock. PLoS Biology 7, e1000086.CrossRefGoogle ScholarPubMed
Yuan, Q., Metterville, D., Briscoe, A.D. & Reppert, S.M. (2007) Insect cryptochromes: Gene duplication and loss define diverse ways to construct insect circadian clocks. Molecular Biology and Evolution 24, 948955.CrossRefGoogle ScholarPubMed