Article contents
Host size-dependent sex allocation behaviour in a parasitoid: implications for Catolaccus grandis (Hymenoptera: Pteromalidae) mass rearing programmes
Published online by Cambridge University Press: 10 July 2009
Abstract
An often encountered problem associated with augmentative and inundative biological control programmes is the high cost of producing sufficient numbers of natural enemies necessary to suppress pest populations within the time constraints imposed by ephemeral agroecosystems. In many arrhenotokous parasitoids, overproduction of males in mass-rearing cultures inflates costs (per female) and thus limits the economic feasibility of these biological control programmes. Within the context of existing production technologies, experiments were conducted to determine if the sex ratio of Catolaccus grandis (Burks), an ectoparasitoid of the boll weevil Anthonomous grandis Boheman, varied as a function of boll weevil larval size. Results from natural and manipulative experiments demonstrate the following behavioural characteristics associated with C. grandis sex allocation behaviour: (i) female C. grandis offspring are produced on large size hosts and male offspring are produced on small hosts; (ii) whether a host is considered large or small depends upon the overall distribution of host sizes encountered by a female parasitoid; and (iii) female parasitoids exhibit a greater rate of increase in body size with host size than do male parasitoids. The observed patterns cannot be explained by sex-specific mortality of immature parasitoids developing on the different host size categories. In subsequent experiments, laboratory cultures of C. grandis exposed daily to successively larger sizes of A. grandis larvae produced successively greater female biased offspring sex ratios, cultures exposed daily to successively smaller sizes of host larvae produced successively greater male biased offspring sex ratios, and cultures exposed daily to equivalent host size distributions over time maintained a uniform offspring sex ratio. By increasing the average size of A. grandis larval hosts exposed to C. grandis by 2.5 mg per day in mass rearing cultures, the percentage of male progeny can be reduced from 33% to 23% over a period of four consecutive exposure days.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 1998
References
- 23
- Cited by