Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-22T19:17:21.542Z Has data issue: false hasContentIssue false

Genomic structure, organization and localization of the acetylcholinesterase locus of the olive fruit fly, Bactrocera oleae

Published online by Cambridge University Press:  24 September 2012

E.G. Kakani
Affiliation:
Department of Biochemistry and Biotechnology, University of Thessaly, Greece
M. Trakala
Affiliation:
Department of Biochemistry and Biotechnology, University of Thessaly, Greece
E. Drosopoulou
Affiliation:
Department of Biology, Aristotle University of Thessaloniki, Greece
P. Mavragani-Tsipidou
Affiliation:
Department of Biology, Aristotle University of Thessaloniki, Greece
K.D. Mathiopoulos*
Affiliation:
Department of Biochemistry and Biotechnology, University of Thessaly, Greece
*
*Author for correspondence Fax: 2410-565290 E-mail: [email protected]

Abstract

Acetylcholinesterase (AChE), encoded by the ace gene, is a key enzyme of cholinergic neurotransmission. Insensitive acetylcholinesterase (AChE) has been shown to be responsible for resistance to OPs and CBs in a number of arthropod species, including the most important pest of olives trees, the olive fruit fly Bactrocera oleae. In this paper, the organization of the B. oleae ace locus, as well as the structural and functional features of the enzyme, are determined. The organization of the gene was deduced by comparison to the ace cDNA sequence of B. oleae and the organization of the locus in Drosophila melanogaster. A similar structure between insect ace gene has been found, with conserved exon-intron positions and junction sequences. The B. oleae ace locus extends for at least 75 kb, consists of ten exons with nine introns and is mapped to division 34 of the chromosome arm IIL. Moreover, according to bioinformatic analysis, the Bo AChE exhibits all the common features of the insect AChE. Such structural and functional similarity among closely related AChE enzymes may implicate similarities in insecticide resistance mechanisms.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, M.D., Celniker, S.E., Holt, R.A., Evans, C.A., Gocayne, J.D., et al. (2000) The genome sequence of Drosophila melanogaster. Science 287, 21852195.Google Scholar
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) Basic local alignment search tool. Journal of Molecular Biology 215, 403410.Google Scholar
Anthony, N., Rocheleau, T., Mocelin, G., Lee, H.J. & ffrench-Constant, R. (1995) Cloning, sequencing and fuctional expression of an acetylcholinesterase gene from the yellow fever mosquito Aedes aegypti. FEBS Letters 368, 461465.Google Scholar
Arpagaus, M., Richier, P., Berge, J.B. & Toutant, J.P. (1992) Acetylcholinesterase of the nematode Steinernema carpocapsae. Characterization of two types of amphiphilic forms differing in their mode of membrane association. European Journal of Biochemistry 207, 11011108.Google Scholar
Bartolomé, C., Maside, X. & Charlesworth, B. (2002) On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. Molecular Biology and Evolution 19, 926937.Google Scholar
Baxter, G.D. & Baker, S.C. (1998) Acetlycholinesterase cDNA of cattle tick, Boophilus microplus: characterization and role in organophosphate resistance. Insect Biochemistry and Molecular Biology 28, 581589.Google Scholar
Blom, N., Gammeltoft, S. & Brunak, S. (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. Journal of Molecular Biology 294, 13511362.Google Scholar
Bourguet, D., Raymond, M., Fournier, D., Malcom, C.A., Toutant, J.P. & Arpagaus, M. (1996) Existence of two acetylcholinesterases in the mosquito Culex pipiens (Diptera: Culicidae). Journal of Neurochemistry 67, 21152123.Google Scholar
Breathnach, R., Benoist, C., O'Hare, K., Cannon, F. & Chambon, P. (1978) Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries. Proceedings of the National Academy of Sciences USA 75, 48534857.CrossRefGoogle ScholarPubMed
Broumas, T., Haniotakis, G., Liaropoulos, C., Tomazou, T. & Ragoussis, N. (2002) The efficacy of an improved form of the mass-trapping method, for the control of the olive fruit fly, Bactrocera oleae (Gmelin) (Dipt., Tephritidae): pilot-scale feasibility studies. Journal of Applied Entomology 126, 217223.Google Scholar
Chen, Z., Newcomb, R., Forbes, E., McKenzie, J. & Batterham, P. (2001) The acetylcholinesterase gene and organophosphorus resistance in the Australian sheep blowfly, Lucilia cuprina. Insect Biochemistry and Molecular Biology 31, 805816.Google Scholar
Clarke, L. & Carbon, J. (1976) A colony bank containing synthetic ColE1 hybrid plasmids representative of the entire E. coli genome. Cell 9, 91106.Google Scholar
Combes, D., Fedon, Y., Toutant, J.P. & Arpagaus, M. (2001) Acetylcholinesterase genes in the nematode Caenorhabditis elegans. International Review of Cytology 209, 207239.CrossRefGoogle ScholarPubMed
Drosopoulou, E. & Scouras, Z.G. (1995) The beta-tubulin gene family evolution in the Drosophila montium subgroup of the melanogaster species group. Journal of Molecular Evolution 41, 293298.Google Scholar
Duret, L. (2001) Why do genes have introns? Recombination might add a new piece to the puzzle. Trends in Genetics 17, 172175.Google Scholar
Economopoulos, A.P., Avtzis, N., Zervas, G., Tsitsipis, J., Haniotakis, G., Tsiropoulos, G. & Manoukas, A. (1977) Experiments on control of olive fly, Dacus oleae (Gmelin), by combined effect of insecticides and releases of gamma-ray sterilized insects. Journal of Applied Entomology 83, 201215.Google Scholar
Eisenhaber, B., Bork, P. & Eisenhaber, F. (1999) Prediction of potential GPI-modification sites in proprotein sequences. Journal of Molecular Biology 292, 741758.Google Scholar
Fournier, D. (2005) Mutations of acetylcholinesterase which confer insecticide resistance in insect populations. Chemico-Biological Interactions 157–158, 257261.Google Scholar
Fournier, D., Bergé, J.B., Cardoso de Almeida, M.L. & Bordier, C. (1988) Acetylcholinesterases from Musca domestica and Drosophila melanogaster brain are linked to membranes by a glycophospholipid anchor sensitive to an endogenous phospholipase. Journal of Neurochemistry 50, 11581163.Google Scholar
Fournier, D., Karch, F., Bride, J.M., Hall, L.M., Berge, J.B. & Spierer, P. (1989) Drosophila melanogaster acetylcholinesterase gene. Structure, evolution and mutations. Journal of Molecular Biology 210, 1522.Google Scholar
Fuhrmann, M., Hausherr, A., Ferbitz, L., Schödl, T., Heitzer, M. & Hegemann, P. (2004) Monitoring dynamic expression of nuclear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene. Plant Molecular Biology 55, 869881.CrossRefGoogle ScholarPubMed
Gao, J.R., Kambhampati, S. & Zhu, K.Y. (2002) Molecular cloning and characterization of a greenbug (Schizaphis graminum) cDNA encoding acetylcholinesterase possibly evolved from a duplicate gene lineage. Insect Biochemistry and Molecular Biology 32, 765775.Google Scholar
Gnagey, A.L., Forte, M. & Rosenberry, T.L. (1987) Isolation and characterization of acetylcholinesterase from Drosophila. The Journal of Biological Chemistry 262, 1329013298.Google Scholar
Haas, R., Marshall, T.L. & Rosenberry, T.L. (1988) Drosophila acetylcholinesterase: demonstration of a glycoinositol phospholipid anchor and an endogenous proteolytic cleavage. Biochemistry 27, 64536457.CrossRefGoogle Scholar
Hall, L.M. & Spierer, P. (1986) The Ace locus of Drosophila melanogaster: structural gene for acetylcholinesterase with an unusual 5′leader. The EMBO Journal 5, 29492954.Google Scholar
Hall, L.M. & Malcolm, C.A. (1991) The acetylcholinesterase gene of Anopheles stephensi. Cellular and Molecular Neurobiology 11, 131141.Google Scholar
Harel, M., Kryger, G., Rosenberry, T., Mallender, W.D., Lewis, T., Fletcher, R.J., Guss, J.M., Silman, I. & Sussman, J.L. (2000) Three dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors. Protein Science 9, 10631072.Google Scholar
Hernandez, R., He, H., Chen, A.C., Ivie, G.W., George, J.E. & Wagner, G.G. (1999) Cloning and sequencing of a putative acetylcholinesterase cDNA from Boophilus microplus (Acari: Ixodidae). Journal of Medical Entomology 36, 764770.Google Scholar
Hong, X., Scofield, D.G. & Lynch, M. (2006) Intron size, abudance, and distribution within untranslated regions of genes. Molecular Biology and Evolution 23, 23922404.Google Scholar
Hsu, J.C., Hymer, D.S., Wu, W.J. & Feng, H.T. (2006) Mutations in the acetylcholinesterase gene of Bactrocera dorsalis associated with resistance to organophosphorus insecticides. Insect Biochemistry and Molecular Biology 36, 396402.Google Scholar
Huang, Y., Qiao, C., Williamson, M.S. & Devonshire, A.L. (1997) Characterization of the acetylcholinesterase gene from insecticide-resistant houseflies (Musca domestica). Chinese Journal of Biotechnology 13, 177183.Google Scholar
Kakani, E.G., Ioannides, I.M., Margaritopoulos, J.T., Seraphides, N.A., Skouras, P.J., Tsitsipis, J.A. & Mathiopoulos, K.D. (2008) A small deletion in the olive fly acetylcholinesterase gene associated with high levels of organophosphate resistance. Insect Biochemistry and Molecular Biology 38, 781787.Google Scholar
Kakani, E.G., Bon, S., Massoulié, J. & Mathiopoulos, K.D. (2011) Altered GPI modification of insect AChE improves tolerance to organophosphate insecticides. Insect Biochemistry and Molecular Biology 41, 150158.Google Scholar
Kapatos, E.T. (1989) Integrated pest management systems of Dacus oleae. pp. 391398in Rombinson, A.S. & Hooper, G.H.S. (Eds) Fruit Flies: Their Biology, Natural Enemies and Control, vol. 3B. Amsterdam, The Netherlands, Elsevier.Google Scholar
Keller, E.B. & Noon, W.A. (1985) Intron splicing: a conserved internal signal in introns of Drosophila pre-mRNAs. Nucleic Acids Research 13, 49714981.Google Scholar
Kozak, M. (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44, 283292.Google Scholar
Kozaki, T., Shono, T., Tomita, T. & Kono, Y. (2001) Fenitroxon insensitive acetylcholinesterases of the housefly, Musca domestica associated with point mutations. Insect Biochemistry and Molecular Biology 31, 991997.Google Scholar
Kramer, J.A. (2001) Omiga™: A PC-based sequence analysis tool. Molecular Biotechnology 19, 97106.Google Scholar
Kyte, J. & Doolittle, R.F. (1982) A simple method for displaying the hydropathic character of a protein. Journal of Molecular Bioliogy 157, 105132.Google Scholar
Lagos, D., Ruiz, F.M., Sánchez, L. & Komitopoulou, K. (2005) Isolation and characterization of the Bactrocera oleae genes orthologous to the sex determining Sex-lethal and doublesex genes of Drosophila melanogaster. Gene 348, 111121.Google Scholar
Lee, D.W., Kim, S.S., Shin, S.W., Kim, W.T. & Boo, K.S. (2006) Molecular characterization of two acetylcholinesterase genes from the oriental tobacco budworm, Helicoverpa assulta (Guenée). Biochimica et Biophysica Acta 1760, 125133.Google Scholar
Legay, C., Bon, S. & Massoulié, J. (1993) Expression of a cDNA encoding the glycolipid-anchored form of rat acetylcholinesterase. FEBS Letters 315, 163166.CrossRefGoogle ScholarPubMed
Li, F. & Han, Z.J. (2002) Two different genes encoding acetylcholinesterase existing in cotton aphid (Aphis gossypii). Genome 45, 11341141.Google Scholar
Li, F. & Han, Z.J. (2004) Mutations in acetylcholinesterase associated with insecticide resistance in the cotton aphid, Aphis gossypii, Glover. Insect Biochemistry and Molecular Biology 34, 397405.Google Scholar
Lockridge, O., Adkins, S. & La Du, B.N. (1987) Location of disulfide bonds within the sequence of human serum cholinesterase. The Journal of Biological Chemistry 262, 1294512952.Google Scholar
MacPhee-Quigley, K., Taylor, P. & Taylor, S. (1985) Primary structures of the catalytic subunits from two molecular forms of acetylcholinesterase. A comparison of NH2-terminal and active center sequences. Journal of Biological Chemistry 260, 1218512189.Google Scholar
Massoulié, J., Pezzementi, L., Bon, S., Krejci, E. & Vallette, F.M. (1993) Molecular and cellular biology of cholinesterases. Progress in Neurobiology 41, 3191.Google Scholar
Mavragani-Tsipidou, P. (2002) Genetic and cytogenetic analysis of the olive fruit fly Bactrocera oleae (Diptera: Tephritidae). Genetica 116, 4557.Google Scholar
Mavragani-Tsipidou, P., Karamanlidou, G., Zacharopoulou, A., Koliais, S. & Kastritisis, C. (1992) Mitotic and polytene chromosome analysis in Dacus oleae (Diptera: Tephritidae). Genome 35, 373378.Google Scholar
Maxwell, E.S. & Fournier, M.J. (1995) The small nucleolar RNAs. Annual Review of Biochemistry 64, 897934.Google Scholar
Montiel Bueno, A. & Jones, O. (2002) Alternative methods for controlling the olive fly, Bactrocera oleae, involving semiochemicals. IOBC Wprs Bulletin 25, 111.Google Scholar
Mori, A., Lobo, N.F., deBruyn, B. & Severson, D.W. (2007) Molecular cloning and characterization of the complete acetylcholinesterase gene (Ace1) from the mosquito Aedes aegypti with implications for comparative genome analysis. Insect Biochemistry and Molecular Biology 37, 667674.Google Scholar
Mount, S.M. (1982) A catalogue of splice junction sequences. Nucleic Acids Research 10, 459472.Google Scholar
Mutero, A. & Fournier, D. (1992) Post-translational modifications of Drosophila acetylcholinesterase: in vitro mutagenesis and expression in Xenopus oocytes. Journal of Biological Chemistry 267, 16951700.Google Scholar
Mutero, A., Pralavorio, M., Bride, J.M. & Fournier, D. (1994) Resistance-associated point mutation in insecticide-insensitive acetylcholinesterase. Proceedings of the National Academy of Sciences USA 91, 59225926.CrossRefGoogle ScholarPubMed
Nielsen, H., Engelbrecht, J., Brunak, S. & von Heijne, G. (1997) A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. International Journal of Neural Systems 8, 581599.Google Scholar
Ohler, U. (2006) Identification of core promoter modules in Drosophila and their application in improved promoter prediction. Nucleic Acids Research 34, 59435950.CrossRefGoogle Scholar
Pesole, G., Mignone, F., Gissi, C., Grillo, G., Licciulli, F. & Liuni, S. (2001) Structural and functional features of eukaryotic mRNA untranslated regions. Gene 276, 7381.Google Scholar
Rodriguez, J.P., Simonetti, J.A., Premoli, A. & Marini, M.A. (1967) The importance of conditions during the adult stage in evaluating an artificial food for larvae of Dacus oleae (Gmel.) (Diptera, Tephritidae.). Zeitschrift für Angewandte Entomologie 59, 127130.Google Scholar
Sambrook, J., Fritch, E.F. & Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. 2nd edn.Cold Spring Harbor, NY, USA, Cold Spring Harbor Laboratory Press.Google Scholar
Schumacher, M., Camp, S., Maulet, Y., Newton, M., MacPhee-Quigley, K., Taylor, S.S., Friedmann, T. & Taylor, P. (1986) Primary structure of Torpedo californica acetylcholinesterase deduced from its cDNA sequence. Nature 319, 407409.Google Scholar
Seino, A., Kazuma, T., Tan, A.J., Tanaka, H., Kono, Y., Mita, K. & Shiotsuki, T. (2007) Analysis of two acetylcholinesterase genes in Bombyx mori. Pesticide Biochemistry and Physiology 88, 92101.Google Scholar
Soreq, H. & Seidman, S. (2001) Acetylcholinesterase-new roles for an old actor. Nature Reviews. Neuroscience 2, 294302.Google Scholar
Soreq, H., Ben-Aziz, R., Prody, C.A., Seidman, S., Gnatt, A., Neville, L., Lieman-Hurwitz, J., Lev-Lehman, E., Ginzberg, D., Lipidot-Lifson, Y. & Zakut, H. (1990) Molecular cloning and construction of the coding region for human acetylcholinesterase reveals G + C-rich attenuation structure. Proceedings of the National Academy of Sciences USA 87, 96889692.Google Scholar
Sorer, H. & Zakut, H. (1993) Human Cholinesterases and Anticholinesterases. San Diego, CA, USA, Academic Press.Google Scholar
Sussman, J.L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L. & Silman, I. (1991) Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253, 872879.Google Scholar
Temeyer, K.B. & Chen, A.C. (2007) Identification and characterization of a cDNA encoding the acetylcholinesterase of Haematobia irritans (L.) (Diptera: Muscidae). DNA Sequence: The Journal of Sequencing and Mapping 18, 8591.Google Scholar
Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.Google Scholar
Tomita, T., Hidoh, O. & Yoshiaki, K. (2000) Absence of protein polymorphism attributable to insecticide insensitivity of acetylcholinesterase in the green rice leafhopper, Nephotettix cincticeps. Insect Biochemistry and Molecular Biology 30, 325333.Google Scholar
Toutant, J.-P. (1989) Insect acetylcholinesterase: catalytic properties, tissue distribution and molecular forms. Progress in Neurobiology 32, 423446.Google Scholar
Tsitsipis, J.A. (1977) Development of a caging and egging system for mass rearing the olive fruit fly, Dacus oleae (Gmel.) (Diptera, Tephritidae). Zeitschrift für Angewandte Entomologie 83, 96105.Google Scholar
Tsoumani, K.T. & Mathiopoulos, K.D. (2011) Genome size estimation with quantitative real-time PCR in two Tephritidae species: Ceratitis capitata and Bactrocera oleae. Journal of Applied Entomology doi: 10.1111/j.1439–0418.2011.01684.x.Google Scholar
Vontas, J.G., Hejazi, M.J., Hawkes, N.J., Cosmidis, N., Loukas, M., Janes, R.W. & Hemingway, J. (2002) Resistance-associated point mutations of organophosphate insensitive acetylcholinesterase, in the olive fruit fly Bactrocera oleae. Insect Biochemistry and Molecular Biology 11, 329336.Google Scholar
Walsh, S.B., Dolden, T.A., Moores, G.D., Kristensen, M., Lewis, T., Devonshire, A.L. & Williamson, M.S. (2001) Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. The Biochemical Journal 359, 175181.Google Scholar
Warren, A.M. & Crampton, J.M. (1991) The Aedes aegypti genome: complexity and organization. Genetical Research 58, 225232.Google Scholar
Zambetaki, A., Kleanthous, K. & Mavragani-Tsipidou, P. (1995) Cytogenetic analysis of malpighian tubule and salivary gland polytene chromosomes of Bactrocera oleae (Dacus oleae) (Diptera: Tephritidae). Genome 38, 10701081.Google Scholar
Zambetaki, A., Zacharopoulou, A., Scouras, Z.G. & Mavragani-Tsipidou, P. (1999) The genome of the olive fruit fly Bactrocera oleae: localization of molecular markers by in situ hybridization to salivary gland polytene chromosomes. Genome 42, 740751.CrossRefGoogle Scholar
Zhu, KY. & Clark, J.M. (1995) Cloning and sequencing of a cDNA encoding acetylcholinesterase in Colorado potato beetle. Leptinotarsa decemlineata (Say) Insect Biochemistry and Molecular Biology 25, 11291138.Google Scholar
Zhu, K.Y., Lee, S.H. & Clark, M. (1996) A point mutation of acetylcholinesterase associated with azinphosmethyl resistance and reduced fitness in Colorado potato beetle. Pesticide Biochemistry and Physiology 55, 100108.Google Scholar
Supplementary material: File

Mathiopoulos Supplementary Material

Appendix

Download Mathiopoulos Supplementary Material(File)
File 277.6 KB
Supplementary material: File

Kakani Supplementary Material

Figure 1

Download Kakani Supplementary Material(File)
File 32.8 KB
Supplementary material: File

Kakani Supplementary Material

Figure 2

Download Kakani Supplementary Material(File)
File 215.6 KB
Supplementary material: File

Kakani Supplementary Material

Figure 3

Download Kakani Supplementary Material(File)
File 81.4 KB