Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T10:39:24.381Z Has data issue: false hasContentIssue false

Genetic differentiation among populations of Brachytrupes portentosus (Lichtenstein 1796) (Orthoptera: Gryllidae) in Thailand and the Lao PDR: the Mekong River as a biogeographic barrier

Published online by Cambridge University Press:  04 May 2011

C. Tantrawatpan
Affiliation:
Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Rangsit Campus, Pathumthani 12121, Thailand
W. Saijuntha*
Affiliation:
Walai Rukhavej Botanical Research Institute (WRBRI), Mahasarakham University, Maha Sarakham 44150, Thailand
W. Pilab
Affiliation:
Walai Rukhavej Botanical Research Institute (WRBRI), Mahasarakham University, Maha Sarakham 44150, Thailand
K. Sakdakham
Affiliation:
Walai Rukhavej Botanical Research Institute (WRBRI), Mahasarakham University, Maha Sarakham 44150, Thailand
P. Pasorn
Affiliation:
Walai Rukhavej Botanical Research Institute (WRBRI), Mahasarakham University, Maha Sarakham 44150, Thailand
S. Thanonkeo
Affiliation:
Walai Rukhavej Botanical Research Institute (WRBRI), Mahasarakham University, Maha Sarakham 44150, Thailand
Thiha
Affiliation:
Walai Rukhavej Botanical Research Institute (WRBRI), Mahasarakham University, Maha Sarakham 44150, Thailand
R. Satrawaha
Affiliation:
Walai Rukhavej Botanical Research Institute (WRBRI), Mahasarakham University, Maha Sarakham 44150, Thailand
T. Petney
Affiliation:
Department of Ecology and Parasitology, Karlsruhe Institute of Technology, Kornblumenstrasse 13, Karlsruhe, Germany
*
*Authors for correspondence Fax: +66-43754407 E-mail: [email protected]

Abstract

The Mekong River is known to act as a boundary between a number of terrestrial and freshwater species, including various parasites and their intermediate hosts as well as endangered mammal species. Little information is available, however, on the genetic differentiation between terrestrial invertebrates to the east and the west of this wide river. The genetic diversity among eight natural populations of Brachytrupes portentosus (Lichtenstein, 1796) (Orthoptera: Gryllidae) collected from Thailand and the Lao People's Democratic Republic (PDR) were analyzed by multilocus enzyme electrophoresis. The allelic profiles of 20 enzymes encoding 23 loci were analyzed. An average of 41% fixed differences was detected between the populations from Thailand and Lao PDR, which are separated by the Mekong River. The percent fixed differences ranged between 4% and 26% within the populations from Thailand and between 4% and 22% within the populations from Lao PDR. A phenogram shows that the eight populations fell into two major clusters based on the Thai and Lao sampling sites. The genetic distance between the samples within Thailand and within Lao PDR was related to the distances between sampling areas. The genetic variability between populations of this cricket indicates that genetic relationships are influenced by a natural barrier as well as by the geographical distance between these allopatric populations.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ademolu, K.O., Idowu, A.B. & Olatunde, G.O. (2009) Morphometrics and enzyme activities in the femoral muscles of the variegated grasshopper Zonocerus variegates (Orthoptera: Pyrgomorphidae) during post-embryonic development. International Journal of Tropical Insect Science 29, 5356.CrossRefGoogle Scholar
Aleixo, A. (2004) Historical diversification of a terre-firme forest bird superspecies: a phylogenetic perspective on the role of different hypotheses of Amazonian diversification. Evolution 58, 12021317.Google ScholarPubMed
Anthony, N.M., Johnson-Bawe, M., Jeffery, K., Clifford, S.L., Abernathy, K.A., Tutin, C.E., Lahm, S.A., White, L.J.T., Utley, J.F., Wickings, E.J. & Bruford, M.W. (2007) The role of Pleistocene refugia and rivers in shaping gorilla genetic diversity in central Africa. Proceedings of the National Academy of Sciences 104, 2043220436.CrossRefGoogle ScholarPubMed
Atim, A.B., Gopalan, S., Baharin, M., Saad, Z. & Samuri, M. (1992) Predaceous insects of cover crops under rubber in Malaysia. Journal of Plant Protection in the Tropics 9, 5156.Google Scholar
Attwood, S.W., Panasoponkul, C., Upatham, E.S., Meng, X.H. & Southgatem, V.R. (2002) Schistosoma ovuncatum n. sp. (Digenea: Schistosomatidae) from northwest Thailand and the historical biogeography of Southeast Asian Schistosoma Weinland, 1858. Systematic Parasitology 51, 119.CrossRefGoogle Scholar
Attwood, S.W., Fatih, F.A., Campbell, I. & Upatham, E.S. (2008) The distribution of Mekong schistosomiasis, past and future: preliminary indications from an analysis of genetic variation in the intermediate past. Parasitology International 57, 256270.CrossRefGoogle ScholarPubMed
Bonnet, E. & Van de Peer, Y. (2002) ZT: a software tool for simple and partial Mantel tests. Journal of Statistical Software 10, 112.Google Scholar
Braswell, W.E., Birge, L.M. & Howard, D.J. (2006) Allonemobius shalontaki, a new cryptic species of ground cricket (Orthoptera: Gryllidae: Nemobiinae) from the Southwestern United States. Annals of the Entomological Society of America 99, 449456.CrossRefGoogle Scholar
Bretman, A., Dawson, D.A., Horsburgh, G.J. & Tregenza, T. (2008) New microsatellite loci isolated from the field cricket Gryllus bimaculatus characterized in two cricket species, Gryllus bimaculatus and Gryllus campestris. Molecular Ecology Resources 8, 10151019.CrossRefGoogle ScholarPubMed
Bristowe, W.S. (1932) Insects and other invertebrates for human consumption in Siam. Transactions of the Entomological Society of London 80, 387404.CrossRefGoogle Scholar
Buston, P.M., Bogdanowicz, S.M., Wong, A. & Harrison, R.G. (2007) Are clownfish groups composed of close relatives? An analysis of microsatellite DNA variation in Amphiprion percula. Molecular Ecology 16, 36713678.CrossRefGoogle ScholarPubMed
Chatterjee, P.B. (1965) A note on Brachytrypes portentosus Lichtenstein (=Achatinus Stoll.) (Orthoptera, Gryllidae), a pest of ramie (Boehmeria nivea). Indian Journal of Entomology 27, 493494.Google Scholar
Cordero, P.J., Llorente, V., Cordero, P. & Ortego, J. (2009) Recognizing taxonomic units in the field-The case of the crickets Oecanthus dulcisonans Gorochov 1993, and O. pellucens (Scopoli, 1763) (Orthoptera: Gryllidae): implications for their distribution and conservation in Southern Europe. Zootaxa 2284, 6368.CrossRefGoogle Scholar
Dangles, O., Magal, C., Pierre, D., Olivier, A. & Casas, J. (2005) Variation in morphology and performance of predator-sensing system in wild cricket populations. The Journal of Experimental Biology 208, 461468.CrossRefGoogle ScholarPubMed
Dawson, D.A., Bretman, A.J. & Tregenza, T. (2003) Microsatellite loci for the field cricket, Gryllus bimaculatus and their cross-utility in other species of Orthoptera. Molecular Ecology Notes 3, 191195.CrossRefGoogle Scholar
DeFoliart, G.R. (2002) The human use of insects as a food resource: a bibliographic account in progress. Available online at http://www.food-insects.com/ (Accessed 3 April 2011).Google Scholar
Ferreira, M. (2006) Evolutionary implications of variation in the calling song of the cricket Gryllus bimaculatus De Geer (Orthoptera: Gryllidae) in Chapter 4 ‘Inter-continental phylogeography and regional gene flow in the field cricket, Gryllus bimaculatus De Geer (Orthoptera: Gryllidae)’. Master thesis, University of Pretoria, Pretoria, South Africa.Google Scholar
Gascon, C., Lougheed, S.C. & Bogart, J.P. (1998) Patterns of genetic population differentiation in four species of Amazonian frogs: a test of the riverine barrier hypothesis. Biotropica 30, 104119.CrossRefGoogle Scholar
Gascon, C., Malcolm, J.R., Patton, J.L., da Silva, M.N.F., Bogart, J.P., Lougheed, S.C., Peres, C.A., Neckel, S. & Boag, P.T. (2000) Riverine barriers and the geographic distribution of Amazonian species. Proceedings of the National Academy of Sciences 97, 1367213677.CrossRefGoogle ScholarPubMed
Gill, P. (2008) Allozyme variation in sympatric population of British grasshoppers–evidence of natural selection. Biological Journal of the Linnean Society 16, 8391.CrossRefGoogle Scholar
Gray, D.A., Barnfield, P., Seifried, M. & Richards, M.H. (2006) Molecular divergence between Gryllus rubens and Gryllus texensis, sister species of field crickets (Orthoptera: Gryllidae). The Canadian Entomologist 138, 305313.CrossRefGoogle Scholar
Groves, C.P. (2007) Speciation and biogeography of Vietnam's primates. Vietnamese Journal of Primatology 1, 2740.Google Scholar
Haffer, J. (1997) Alternative models of vertebrate speciation in Amazonia: an overview. Biodiversity and Conservation 6, 451476.CrossRefGoogle Scholar
Holsinger, K.E. & Wier, B.S. (2009) Genetics in geographically structured populations: defining, estimating and interpreting F ST. Nature Reviews Genetics 10, 639650.CrossRefGoogle ScholarPubMed
Huang, Y., Orti, G., Sutherlin, M., Duhachek, A. & Zera, A. (2000) Phylogenetic relationships of North American field crickets inferred from mitochondrial DNA data. Molecular Phylogenetics and Evolution 17, 4857.CrossRefGoogle ScholarPubMed
Hurwood, D.A., Adamson, E.A.S. & Mather, P.B. (2008) Evidence for strong genetic structure in a regionally important, highly vagile cyprinid (Henicorhynchus lobatus) in the Mekong River Basin. Ecology of Freshwater Fish 17, 273283.CrossRefGoogle Scholar
Jalil, M.F., Cable, J., Sinyor, J., Lackman-Ancrenaz, I., Ancrenaz, M., Bruford, M.W. & Goossens, B. (2008) Riverine effects on mitochondrial structure of Bornean orangutans (Pongo pygmaeus) at two spatial scale. Molecular Ecology 17, 28982909.CrossRefGoogle Scholar
Johansson, U.S., Alström, P., Olsson, U., Ericson, P.G.P., Sundberg, P. & Price, T.D. (2007) Build-up of the Himalayan avifauna through immigration: a biogeographical analysis of the Phylloscopus and Seicercus warblers. Evolution 61, 324333.CrossRefGoogle ScholarPubMed
Karlsson, S. & Mork, J. (1999) deviation from Hardy-Weinberg equilibrium, and temporal instability in allele frequencies at microsatellite loci in a local population of Atlantic cod. Marine Science 62, 15881596.Google Scholar
Laoprom, N., Saijuntha, W., Sithithaworn, P., Wongkham, S., Laha, T., Ando, K., Andrews, R. & Petney, T.N. (2009) Biological variation within Opisthorchis viverrini sensu lato in Thailand and Lao PDR. Journal of Parasitology 95, 13071313.CrossRefGoogle ScholarPubMed
Long, Y., Kirkpatrick, C.R., Zhongtai, & Xiaolin, (1994) Report on the distribution, population, and ecology of the Yunnan snub-nosed monkey (Rhinopithecus bieti). Primates 35, 241250.CrossRefGoogle Scholar
Loxdale, H.D. & Lushai, G. (1998) Molecular markers in entomology (Review). Bulletin of Entomological Research 88, 577600.CrossRefGoogle Scholar
Mantel, N.A. (1967) The detection of disease clustering and a generalized regression approach. Cancer Research 27, 209220.Google Scholar
Meijaard, E. & Groves, C.P. (2006) The geography of mammals and rivers in Southeast Asia. pp. 305329 in Lehman, S.M. & Fleagle, J.G. (Eds) Primate Biogeography. New York, USA, Springer.CrossRefGoogle Scholar
Nevo, E., Beiles, A., Korol, A.B., Ronin, Y.I., Pavlicek, T. & Hamilton, W. (2000) Extraordinary multilocus genetic organization in mole crickets, Gryllotalpidae. Evolution 54, 586605.Google ScholarPubMed
Ngamsiri, T., Nakajima, M., Sukmanomon, S., Sukumasavin, N., Kamonrat, W., Na-Nakorn, U. & Taniguchi, N. (2007) Genetic diversity of wild Mekong giant catfish Pangasianodon gigas collected from Thailand and Cambodia. Fisheries Science 73, 792799.CrossRefGoogle Scholar
Noonan, B.P. & Wray, K.P. (2006) Neotropical diversification: the effects of a complex history on diversity within the poison frog genus Dendrobates. Journal of Biogeography 33, 10071020.CrossRefGoogle Scholar
Parsons, Y.M. & Shaw, K.L. (2001) Species boundaries and genetic diversity among Hawaiian crickets of the genus Laupala identified using amplified fragment length polymorphism. Molecular Ecology 10, 17651772.CrossRefGoogle ScholarPubMed
Quemere, E., Crouau-Roy, B., Rabarivola, C., Louis, E.E. & Chikhi, L. (2010) Landscape genetics of an endangered lemur (Propithecus tattersalli) within its entire fragmented range. Molecular Ecology 19, 16061621.CrossRefGoogle ScholarPubMed
Raymond, M. & Rousset, F. (1995) Population genetics software for exact test and ecumenicism. Journal of Heredity 86, 248249.CrossRefGoogle Scholar
Repaci, V., Stow, A.J. & Briscoe, D.A. (2007) Fine-scale genetic structure, co-founding and multiple mating in the Australian allodapine bee (Ramphocinclus brachyurus). Journal of Zoology 270, 687691.CrossRefGoogle Scholar
Richardson, B.J., Baverstock, P.R. & Adams, M. (1986) Allozyme Electrophoresis: A Handbook for Animal Systematics and Population Studies. Sydney, Australia, Academic Press.Google Scholar
Roos, C., Nadler, T. & Walter, L. (2008) Mitochondrial phylogeny, taxonomy and biogeography of the silvered langur species group (Trachypithecus cristatus). Molecular Phylogenetics and Evolution 47, 629636.CrossRefGoogle ScholarPubMed
Saijuntha, W., Sithithaworn, P., Wongkham, S., Laha, T., Pipitgool, V., Tesana, S., Chilton, N.B., Petney, T.N. & Andrews, R.H. (2007) Evidence of a species complex within the food-borne trematode Opisthorchis viverrini and possible co-evolution with their first intermediate hosts. International Journal for Parasitology 37, 695703.CrossRefGoogle ScholarPubMed
Sneath, P.H.A. & Sokal, R.R. (1978) Numerical Taxonomy: The Principles and Practice of Numerical Classification. San Francisco, USA, WH Freeman & Co.Google Scholar
So, N., Maes, G.E. & Volckaert, F.A.M. (2006) High genetic diversity in cryptic populations of the migratory sutchi catfish Pangasianodon hypophthalmus in the Mekong River. Heredity 96, 166174.CrossRefGoogle ScholarPubMed
Sverdrup-Jensen, S. (2002) Fisheries in the Lower Mekong Basin: Status and Perspectives. MRC Technical Paper No. 6, Mekong River Commission, Phnom Penh, Cambodia. ISSN: 1683–1489.Google Scholar
Tinghitella, R.M. (2008) Rapid evolutionary change in a sexual signal: genetic control of the mutation ‘flatwing’ that renders male field crickets (Teleogryllus oceanicus) mute. Heredity 100, 261267.CrossRefGoogle Scholar
Triplehorn, C.A. & Johnson, N.F. (2005) Borror and Delong's Introduction to the Study of Insects. Belmont, CA, USA, Thompson Brook/Cole.Google Scholar
Vandergast, A.G., Bohonak, A.J., Weissman, D.B. & Fisher, R.N. (2007) Understanding the genetic effects of recent habitat fragmentation in the context of evolutionary history: phylogeography and landscape genetics of a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae: Stenopelmatus). Molecular Ecology 16, 977992.CrossRefGoogle ScholarPubMed
Wallace, A.R. (1853) A Narrative of Travels on the Amazon and Rio Negro. London, UK, Reeve.Google Scholar
Weir, B.S. & Cockerham, C.C. (1984) Estimating F-statistics for the analysis of population structure. Evolution 38, 13581370.Google ScholarPubMed