Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-22T18:19:04.816Z Has data issue: false hasContentIssue false

The genetic basis for organophosphorus resistance in the Australian sheep blowfly, Lucilia cuprina (Wiedemann) (Diptera, Calliphoridae)

Published online by Cambridge University Press:  10 July 2009

J. T. A. Arnold
Affiliation:
Division of Entomology, CSIRO, Canberra, A.C.T. 2601, Australia
M. J. Whitten
Affiliation:
Division of Entomology, CSIRO, Canberra, A.C.T. 2601, Australia

Abstract

Organophosphate resistance in Lucilia cuprina (Wied.) is shown, by the backcross and discriminating dose technique, to be controlled by two major genetic loci on chromosomes 4 and 6. Respectively designated Rop-1 and Rop-2, they are positioned on the known genetic map. Rop-1 has three resistance alleles and one of these, and the Rop-2 allele, demonstrated stable transmission and expression in the absence of insecticide. Expression of resistance was either intermediate or incompletely dominant depending on locus and stage of maturity. This, and interaction between the loci, suggests that they have different biochemical mechanisms.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andres, L. A. & Prout, T. (1960). Selection response and genetics of parathion resistance in the Pacific spider mite, Tetranychus pacificus.—J. econ. Ent. 53, 626630.CrossRefGoogle Scholar
Arnold, J. T. A. & Whitten, M. J. (1975). Measurement of resistance in Lucilia cuprina larvae and absence of correlation between organophosphorus-resistance levels in larvae and adults.—Entomologia exp. appl. 18, 180186.CrossRefGoogle Scholar
Bliss, C. I. (1935). The calculation of the dosage-mortality curve.—Ann. appl. Biol. 22, 134167.CrossRefGoogle Scholar
Brown, A. W. A. & Pal, R. (1971). Insecticide resistance in arthropods.—2nd edn, 491 pp., Geneva, WHO (Monograph Series no. 38).Google ScholarPubMed
Busvine, J. R., Bell, J. D. & Guneidy, A. M. (1963). Toxicology and genetics of two types of insecticide resistance in Chrysomyia putoria (Wied.).—Bull ent. Res. 54, 589600.CrossRefGoogle Scholar
Cochran, D. G. (1973). Inheritance of malathion resistance in the German cockroach.—Entomologia exp. appl. 16, 8390.CrossRefGoogle Scholar
Cranham, J. E. (1974). Resistance to organophosphates in red spider mite, Tetranychus urticae, from English hop gardens.—Ann. appl. Biol. 78, 99111.CrossRefGoogle Scholar
Croft, B. A., Brown, A. W. A. & Hoying, S. A. (1976). Organophosphorus-resistance and its inheritance in the predaceous mite Amblyseius fallacis.—J. econ. Ent. 69, 6468.CrossRefGoogle Scholar
Feroz, M. (1968). Toxicological and genetical studies of organophosphorus-resistance in Cimex lectularius L.—Bull. ent. Res. 59, 377382.CrossRefGoogle Scholar
Georghiou, G. P. (1969). Genetics of resistance to insecticides in housefly and mosquitoes.—Expl Parasit. 26, 224255.CrossRefGoogle ScholarPubMed
Georghiou, G. P., Ariaratnam, V., Pasternak, M. E. & Lin, Chi S. (1975). Organophosphorus multiresistance in Culex quinquefasciatus in California.—J. econ. Ent. 68, 461467.CrossRefGoogle Scholar
Hart, R. J. (1963). The inheritance of diazinon resistance in an Australian strain of Musca domestica L.—Bull. ent. Res. 54, 461465.CrossRefGoogle Scholar
Inoue, K. (1972). Genetical studies on acaracide resistance of citrus red mites, Panonychus citri (McG): I.—Genetics of phenkapton resistance in the citrus red mite.—Bull. hort. Res. Stn Kurume (D) 7, 1320.Google Scholar
Katz, A. J., Collins, W. J. & Skavaril, R. V. (1973). Resistance in the German cockroach (Orthoptera: Blattellidae): The inheritance of diazinon resistance and cross-resistance.—J. med. Ent. 10, 599604.CrossRefGoogle ScholarPubMed
Ozaki, K., Kurosu, Y. & Koike, H. (1966). The relation between malathion resistance and esterase activity in the green rice leafhopper, Nephotettix cincticeps Uhler.—Soc. Areas biol. chem. Overlap (SABCO) J. (Osaka) 2, 98106.Google Scholar
Pasalu, I. C. (1974). Studies on the inheritance of resistance to malathion in Tribolium castaneum (Herbst)Entomologist's Newsl. 4, 7.Google Scholar
Plapp, F. W. Jr. (1970). In O'Brien, R. D. & Yamamoto, I. (Eds.) Biochemical toxicology of insecticides, p. 179; 225 pp., New York, Academic Press.Google Scholar
Roxburgh, N. A. & Shanahan, G. J. (1973). A method for the detection and measurement on insecticide resistance in larvae of Lucilia cuprina (Wied.) (Dipt., Calliphoridae).—Bull. ent. Res. 63, 99102.CrossRefGoogle Scholar
Schuntner, C. A. & Roulston, W. J. (1968). A resistance mechanism in organophosphorus-resistant strains of sheep blowfly (Lucilia cuprina).—Aust. J. biol. Sci. 21, 173176.CrossRefGoogle ScholarPubMed
Shanahan, G. J. (1958). Resistance to dieldrin in Lucilia cuprina (Wied.), the Australian sheep blowfly.—Nature, Lond. 181, 860861.CrossRefGoogle ScholarPubMed
Shanahan, G. J. (1965). A review of the flystrike problem of sheep in Australia.—J. Aust. Inst. agric. Sci. 31, 1124.Google Scholar
Shanahan, G. J. (1966). Development of a changed response in Lucilia cuprina (Wied.) to organophosphorus insecticides in New South Wales.—Bull. ent. Res. 57, 93100.CrossRefGoogle Scholar
Shanahan, G. J. (1967). The sheep blowfly's tolerance of insecticides (Lucilia cuprina).—Agric. Gaz. N.S.W. 78, 444445.Google Scholar
Shanahan, G. J. & Hart, R. J. (1966). Change in response of Lucilia cuprina Wied. to organophosphorus insecticides in Australia.—Nature, Lond. 212, 14661467.CrossRefGoogle Scholar
Stone, B. F. (1968). A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals.—Bull. Wld Hlth Org. 38, 325326.Google ScholarPubMed
Stone, B. F. (1972). The genetics of resistance by ticks to acaricides.—Aust. vet. J. 48, 345350.CrossRefGoogle ScholarPubMed
Suzuki, T. & Umino, T. (1969). Some genetical studies on Culex pipiens complex. Part VII.—Mode of inheritance of diazinon-resistance in Culex pipiens molestus larvae.—Jap. J. sanit. Zool. 20, 205208.CrossRefGoogle Scholar
Tadano, T. (1969). Genetical relationships between malathion-resistance and fenthion-resistance in larvae of Culex pipiens pallens Coquillett.—Jap. J. sanit. Zool. 20, 158160.CrossRefGoogle Scholar
Tsukamoto, M. (1965). The estimation of recombination values in backcross data when penetrance is incomplete, with a special reference to its application to genetic analysis of insecticide-resistance.—Jap. J. Genet. 40, 159171.CrossRefGoogle Scholar
Umino, T. & Suzuki, T. (1966). Some genetical studies on Culex pipiens complex. V.—Studies on the mode of inheritance of malathion-resistance in larvae of Culex pipiens fatigans.—Jap. J. sanit. Zool. 17, 191195.CrossRefGoogle Scholar
Van Zon, A. Q. & Helle, W. (1966). A search for linkage between genes for albinism and parathion resistance in Tetranychus pacificus McGregor.—Genetica 37, 181185.CrossRefGoogle Scholar
Whitten, M. J., Foster, G. G., Arnold, J. T. & Konowalow, C. (1975). The Australian sheep blowfly, Lucilia cuprina.—pp. 401418 in King, R. C. (Ed.) Handbook of genetics 3, 700 pp. New York, Plenum.Google Scholar