Hostname: page-component-6bf8c574d5-2jptb Total loading time: 0 Render date: 2025-02-22T20:15:51.638Z Has data issue: false hasContentIssue false

Fitness and mating compatibility of Rachiplusia nu strains exposed to soybean expressing Cry1Ac in Argentina

Published online by Cambridge University Press:  17 February 2025

Carolina Manzano
Affiliation:
PROIMI - Biotecnología, CONICET, División de Control Biológico, Av. Belgrano y Pje. Caseros (T4001MVB), San Miguel de Tucumán, Tucumán, Argentina
M. Alejandro Vera
Affiliation:
EEAOC, Sección Zoología Agrícola, Tucumán, Argentina
Augusto S. Casmuz
Affiliation:
EEAOC, Sección Zoología Agrícola, Tucumán, Argentina
Erica Luft Albarracin
Affiliation:
PROIMI - Biotecnología, CONICET, División de Control Biológico, Av. Belgrano y Pje. Caseros (T4001MVB), San Miguel de Tucumán, Tucumán, Argentina
Gerardo Gastaminza
Affiliation:
EEAOC, Sección Zoología Agrícola, Tucumán, Argentina
María Gabriela Murúa*
Affiliation:
INBIOFIV-CONICET-UNT, Tucumán, Argentina Facultad de Ciencias Naturales e Instituto Miguel Lillo (UNT), Tucumán, Argentina
*
Corresponding author: María Gabriela Murúa; Email: [email protected]

Abstract

Rachiplusia nu (Guenée) (Lepidoptera: Noctuidae) is a significant agricultural pest in South America infesting several crops, including soybeans. Bacillus thuringiensis (Berliner) (Bt) soybean, expressing Cry1Ac protein, is widely planted as a control method for numerous lepidopteran pests. However, insect resistance to Bt proteins poses a threat to its sustainability. Recent field reports from Argentina, Uruguay, and Brazil have documented unexpected injury to Bt soybean caused by R. nu populations, which may indicate the development of resistance to Cry1Ac in this species. This study aimed to evaluate the biological performance, reproductive parameters, and reproductive compatibility of two R. nu strains, one susceptible (SS) and the other exhibiting reduced susceptibility to Bt toxin (RR), when reared on Bt and non-Bt soybean. Reproductive compatibility between strains was investigated through parental and hybrid crosses, evaluating fecundity, fertility, and mating success. SS larvae fed with Bt soybean failed to complete their life cycle, whereas RR larvae exhibited higher survival rates. Egg and larval stages of RR larvae were longer when reared on Bt soybean. Pupal mass was lower for Bt-fed resistant strain, although this did not reflect on fecundity and longevity. Results on parental crosses revealed that Bt-fed RR strain displayed reduced mating success, fecundity, and fertility, compared to the non-Bt treatment. Hybrid crosses showed evidence for prezygotic and postzygotic incompatibility. These results suggest a shift in susceptibility of R. nu to Cry1Ac protein and highlight the importance of implementing robust insect resistance management strategies to maintain the effectiveness of Bt crops.

Type
Review Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbas, S, Alam, A, Abbas, M, Abbas, A, Ali, J, Schilthuizen, M, Romano, D and Zhao, CR (2024) Lateralised courtship behaviour and its impact on mating success in Ostrinia furnacalis (Lepidoptera: Crambidae). Bulletin of Entomological Research 114, 374382. doi:10.1017/S0007485324000178.CrossRefGoogle ScholarPubMed
Acosta-Parra, LG, Barrionuevo, MJ, Beccacece, HM, Casmuz, AS, Chalup, AE, Drewniak, ME, Fichetti, PDC, Murúa, MG, San Blas, G and Vera, MA (2023) Orugas de lepidópteros de importancia agrícola en Argentina. In Claps, LE, Roig-Juñent, SA and Morrone, JJ (eds). Biodiversidad de Artrópodos Argentinos. San Miguel de Tucumán, Argentina: INSUE UNT, 8127.Google Scholar
Adamczyk, JJ Jr, Adams, LC and Hardee, DD (2001) Field efficacy and seasonal expression profiles for terminal leaves of single and double Bacillus thuringiensis toxin cotton genotypes. Journal of Economic Entomology 94, 15891593. doi:10.1603/0022-0493-94.6.1589.CrossRefGoogle ScholarPubMed
Almada (2022) Susceptibilidad de Rachiplusia nu (Lepidoptera: Noctuidae) a la toxina Cry1Ac en Soja Bt en Argentina. La Plata, Argentina: Publicación Especial de la Sociedad Entomológica Argentina, 294.Google Scholar
Arends, B, Reisig, DD, Gundry, S, Huseth, AS, Reay-Jones, FP, Greene, JK and Kennedy, GG (2021) Effectiveness of the natural resistance management refuge for Bt-cotton is dominated by local abundance of soybean and maize. Scientific Reports 11, 17601. doi:10.1038/s41598-021-97123-8.CrossRefGoogle ScholarPubMed
Argenbio (2024) Cultivos transgénicos aprobados en la Argentina. https://argenbio.org/cultivos-transgenicos#listado (accessed 10 October 2024).Google Scholar
Asociación Argentina de Productores en Siembra Directa (AAPRESID) (2022) https://www.aapresid.org.ar/blog/soja-bt-preocupacion-posible-quiebre-eficacia (accessed 3 January 2025).Google Scholar
Asociación Argentina de Protección Profesional de Cultivos Extensivos (AAPPCE) (2022) https://aappce.org/2022/07/04/antesala-de-una-posible-resistencia-dano-inesperado-de-oruga-medidora-en-soja-bt-el-caso-entre-rios/ (accessed 3 January 2025).Google Scholar
Barbut, J (2008) Révision du genre Rachiplusia Hampson, 1913 (Lepidoptera, Noctuidae, Plusiinae). Bulletin de la Société Entomologique de France 113, 445452.CrossRefGoogle Scholar
Barrionuevo, MJ, Murúa, MG, Goane, L, Meagher, R and Navarro, F (2012) Life table studies of Rachiplusia nu (Guenée) and Chrysodeixis (= Pseudoplusia) includens (Walker) (Lepidoptera: Noctuidae) on artificial diet. Florida Entomologist 95, 944951. doi:10.1653/024.095.0419.CrossRefGoogle Scholar
Bilbo, TR, Reay-Jones, FP, Reisig, DD, Musser, FR and Greene, JK (2018) Effects of Bt corn on the development and fecundity of corn earworm (Lepidoptera: Noctuidae). Journal of Economic Entomology 111, 22332241. doi:10.1093/jee/toy203.CrossRefGoogle ScholarPubMed
Bourguet, D, Bethenod, MT, Pasteur, N and Viard, F (2000) Gene flow in the European corn borer Ostrinia nubilalis: Implications for the sustainability of transgenic insecticidal maize. Proceedings of the Royal Society of London B: Biological Sciences 267, 117122. doi:10.1098/rspb.2000.0975.CrossRefGoogle ScholarPubMed
Braga, LE, Warpechowski, LF, Diniz, LH, Dallanora, A, Reis, AC, Farias, JR and Bernardi, O (2024) Characterizing the differential susceptibility and resistance to insecticides in populations of Chrysodeixis includens and Rachiplusia nu (Lepidoptera: Noctuidae) in Brazil. Pest Management Science 80, 48534862. doi:10.1002/ps.8197.CrossRefGoogle ScholarPubMed
Carriere, Y, Crowder, DW and Tabashnik, BE (2010) Evolutionary ecology of insect adaptation to Bt crops. Evolutionary Applications 3, 561573. doi:10.1111/j.1752-4571.2010.00129.x.CrossRefGoogle ScholarPubMed
Casuso, M, Tarragó, J, Pérez, G, Colli, S and Nadal, N (2023) Orugas defoliadoras en soja: Estado de situación en sojas Bt para el área de influencia de la EEA INTA Las Breñas Chaco Argentina. https://repositorio.inta.gob.ar/xmlui/bitstream/handle/20.500.12123/16133/INTA_CRChaco-Formosa_EEALasBre%C3%B1as_Casuso_M_Orugas_defoliadoras_soja_Estado_situacion.pdf?sequence=1&isAllowed=y (accessed 10 October 2024).Google Scholar
Chandrasena, D, Signorini, A, Abratti, G, Storer, NP, Lopez Olaciregui, M, Alves, AP and Pilcher, CD (2018) Characterization of field –evolved resistance to Bacillus thuringiensis-derived Cry1F δ-endotoxin in Spodoptera frugiperda populations from Argentina. Pest Management Science 74, 746754. doi:10.1002/ps.4776.CrossRefGoogle ScholarPubMed
Cibils, X, González, A, Pessio, M, Calistro, P, Rossi, C, Chiaravalle, W, Abbate, S and Baráibar, N (2023) Crónica del daño de la lagarta medidora (Rachiplusia nu) en soja Intacta®. Revista INIA. Vol. 72, pp. 5358. http://www.ainfo.inia.uy/digital/bitstream/item/17042/1/Revista-INIA-72-marzo-2023-15.pdf (accessed 3 January 2025).Google Scholar
Consorcios Regionales de Experimentación Agrícola (CREA) (2024). Ensayos comparativos de rendimiento en soja. Informe final ECR Soja ( 2023/24 ). https://media.contenidoscrea.org.ar/adjuntos/334/documentos/000/007/0000007263.pdf (accessed 3 January 2025).Google Scholar
Decker-Franco, C, Blas, GS, Balbi, EI, Fichetti, P, Puebla, AF, Toledo, AV and Arneodo, JD (2023) Genetic diversity of the polyphagous pest Rachiplusia nu across crops and locations in the Argentine Pampas. Entomologia Experimentalis Et Applicata 171, 887895. doi:10.1111/eea.13369.CrossRefGoogle Scholar
Elzinga, JA, Mappes, J and Kaila, L (2014) Pre-and post-mating reproductive barriers drive divergence of five sympatric species of Naryciinae moths (Lepidoptera: Psychidae). Biological Journal of the Linnean Society 112, 584605. doi:10.1111/bij.12281.CrossRefGoogle Scholar
FAOSTAT (2024) Statistical databases and data-sets of the Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/es/?data/QC#data/QCL/visualize (accessed 10 October 2024).Google Scholar
Fehr, WR, Caviness, CE, Burmood, DT and Pennington, JS (1971) Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Science 11, 929931. doi:10.2135/cropsci1971.0011183X001100060051x.CrossRefGoogle Scholar
Fogliata, SV, Herrero, MI, Vera, MA, Castagnaro, AP, Gastaminza, G and Murúa, MG (2019) Host plant or geographic barrier? Reproductive compatibility among Diatraea saccharalis populations from different host plant species and locations in Argentina. Entomologia Experimentalis Et Applicata 167, 129140. doi:10.1111/eea.12735.CrossRefGoogle Scholar
Fogliata, SV, Vera, A, Gastaminza, G, Cuenya, MI, Zucchi, MI, Willink, E, Castagnaro, AP and Murúa, MG (2016) Hybrid sterility between two populations of Diatraea saccharalis (Lepidoptera: Crambidae) (F.) from different host plant species and regions in Argentina. Bulletin of Entomological Research 26, 17. doi:10.1017/S0007485316000249.Google Scholar
Gassmann, AJ, Carrière, Y and Tabashnik, BE (2009) Fitness costs of insect resistance to Bacillus thuringiensis. Annual Review of Entomology 54, 147163. doi:10.1146/annurev.ento.54.110807.090518.CrossRefGoogle ScholarPubMed
Gassmann, AJ and Hutchison, WD (2012) Bt crops and insect pests: Past successes, future challenges and opportunities. GM Crops & Food 3, 139139. doi:10.4161/gmcr.21778.CrossRefGoogle ScholarPubMed
Gryspeirt, A and Grégoire, JC (2012) Effectiveness of the high dose/refuge strategy for managing pest resistance to Bacillus thuringiensis (Bt) plants expressing one or two toxins. Toxins 4, 810835. doi:10.3390/toxins4100810.CrossRefGoogle ScholarPubMed
Head, GP and Greenplate, J (2012) The design and implementation of insect resistance management programs for Bt crops. GM Crops & Food 3, 144153. doi:10.4161/gmcr.20743.CrossRefGoogle ScholarPubMed
Herrero, MI, Fogliata, SV, Vera, A, Casmuz, A, Gómez, DS, Castagnaro, AP, Gastaminza, G and Murúa, MG (2017) Biological characterization and mating compatibility of Helicoverpa gelotopoeon (D.) (Lepidoptera: Noctuidae) populations from different regions in Argentina. Bulletin of Entomological Research 108, 108115. doi:10.1017/S000748531700058X.CrossRefGoogle ScholarPubMed
Horikoshi, RJ, Bernardi, O, Bernardi, D, Okuma, DM, Farias, JR, Miraldo, LL, Amaral, FS and Omoto, C (2016) Near-isogenic Cry1F-resistant strain of Spodoptera frugiperda (Lepidoptera: Noctuidae) to investigate fitness cost associated with resistance in Brazil. Journal of Economic Entomology 109, 854859. doi:10.1093/jee/tov387.CrossRefGoogle ScholarPubMed
Horikoshi, RJ, Bernardi, O, Godoy, DN, Semeão, AA, Willse, A, Corazza, GO, Ruthes, E, Fernandes, DDS, Sosa-Gómez, DR, Bueno, ADF, Omoto, C, Berger, GU, Correa, AS, Martinelli, S, Dourado, PM and Head, G (2021) Resistance status of lepidopteran soybean pests following large-scale use of MON 87701 × MON 89788 soybean in Brazil. Scientific Reports 11, 21323. doi:10.1038/s41598-021-00770-0.CrossRefGoogle ScholarPubMed
Horner, TA, Dively, GP and Herbert, DA (2003) Effects of MON810 Bt Field Corn on Adult Emergence of Helicoverpa zea (Lepidoptera: Noctuidae). Journal of Economic Entomology 96, 925930. doi:10.1093/jee/96.3.925.CrossRefGoogle Scholar
Jakka, SRK, Knight, VR and Jurat-Fuentes, JL (2014) Fitness costs associated with field-evolved resistance to Bt maize in Spodoptera frugiperda (Lepidoptera: Noctuidae). Journal of Economic Entomology 107, 342351. doi:10.1603/EC13326.CrossRefGoogle ScholarPubMed
Kaplan, EL and Meier, P (1958) Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 53, 457481. doi:10.1080/01621459.1958.10501452.CrossRefGoogle Scholar
Kruger, M, Van den Berg, J and Van Rensburg, JBJ (2012) Reproductive biology of Bt-resistant and susceptible field-collected larvae of the maize stem borer, Busseola fusca (Lepidoptera: Noctuidae). African Entomology 20, 3543.CrossRefGoogle Scholar
Lemoine, NP, Capdevielle, JN and Parker, JD (2015) Effects of in situ climate warming on monarch caterpillar (Danaus plexippus) development. PeerJ 3, e1293. doi:10.7717/peerj.1293.CrossRefGoogle ScholarPubMed
Liu, J, Tallat, M, Wang, G, Li, Z, Li, G, Zhao, X and Feng, H (2024) Courtship behavior of adult Spodoptera frugiperda (Lepidoptera: Noctuidae) observed using track 3D trajectory tracking. Insects 15, 824. doi:10.3390/insects15100824.CrossRefGoogle ScholarPubMed
Liu, YB, Tabashnik, BE, Dennehy, TJ, Patin, AL, Sims, MA, Meyer, SK and Carrière, Y (2001) Effects of Bt cotton and Cry1Ac toxin on survival and development of pink bollworm (Lepidoptera: Gelechiidae). Journal of Economic Entomology 94, 12371242. doi:10.1603/0022-0493-94.5.1237.CrossRefGoogle Scholar
Muraro, DS, Garlet, CG, Godoy, DN, Cossa, GE, Rodrigues Junior, GLDS, Stacke, RF, Medeiros, SL, Guedes, JV and Bernardi, O (2019) Laboratory and field survival of Spodoptera frugiperda (Lepidoptera: Noctuidae) on Bt and non-Bt maize and its susceptibility to insecticides. Pest Management Science 75, 22022210. doi:10.1002/ps.5347.CrossRefGoogle ScholarPubMed
Murúa, MG, Vera, MA, Michel, A, Casmuz, AS, Fatoretto, J and Gastaminza, G (2019) Performance of field-collected Spodoptera frugiperda (Lepidoptera: Noctuidae) strains exposed to different transgenic and refuge maize hybrids in Argentina. Journal of Insect Science 19, 17. doi:10.1093/jisesa/iez110.CrossRefGoogle ScholarPubMed
Murúa, MG, Vera, MT, Abraham, S, Juárez, M, Prieto, S, Head, GP and Willink, E (2008) Fitness and mating compatibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) populations from different host plant species and regions in Argentina. Annals of the Entomological Society of America 101, 639649. doi:10.1603/0013-8746(2008)101[639:FAMCOS]2.0.CO;2.CrossRefGoogle Scholar
Murúa, MG, Virla, E and Defagó, V (2003) Evaluación de cuatro dietas artificiales para la cría de Spodoptera frugiperda (Lep.: Noctuidae) destinada a mantener poblaciones experimentales de himenópteros parasitoides. Boletín de Sanidad Vegetal Plagas 29, 4351.Google Scholar
Nardon, AC, Mathioni, SM, Dos Santos, LV and Rosa, DD (2021) Primeiro registro de Rachiplusia nu (Guenée, 1852) (Lepidoptera: Noctuidae) sobrevivendo em soja Bt no Brasil. Entomology Communications 3, ec03028ec03028. doi:10.37486/2675-1305.ec03028.CrossRefGoogle Scholar
Ongaratto, S, Silveira, CM, Santos, MC, Gorri, JER, Sartori, MMP, Hunt, TE, Lourenção, AL and Baldin, ELL (2021) Resistance of soybean genotypes to Anticarsia gemmatalis (Lepidoptera: Erebidae): Antixenosis and antibiosis characterization. Journal of Economic Entomology 114, 25712580. doi:10.1093/jee/toab197.CrossRefGoogle ScholarPubMed
Páez-Jerez, PG, Hill, JG, Pereira, EJ, Alzogaray, RA and Vera, MT (2023) Ten years of Cry1Ac Bt soybean use in Argentina: Historical shifts in the community of target and non-target pest insects. Crop Protection 170, 106265. doi:10.1016/j.cropro.2023.106265.CrossRefGoogle Scholar
Paredes, V, Pérez, D, Rodriguez, G and Devani, M (2022) Resultados de la encuesta realizada a los productores de soja, campaña 2021/2022 en Tucumán y zonas de influencia, y comparación con campañas anteriores.Devani, MR, Ledesma, F and Sánchez, JR (eds.). El Cultivo de la Soja En El Noroeste Argentino. Campaña 2021–2022. Publicación Especial Soja EEAOC Nº 67. Argentina: EEAOC, Las Talitas, Tucumán, 127132. https://www.eeaoc.gob.ar/?publicacion=capitulo-g1-resultados-de-la-encuesta-realizada-a-los-productores-de-soja-campana-2021-2022-en-tucuman-y-zonas-de-influencia-y-comparacion-con-campanas-anteriores (accessed 10 October 2024).Google Scholar
Pasqualotto, L, Alves, JDS, Pedó, H, de Souza Trombim, M, de Souza Trombim, M, Soares, VN, Jun Horikoshi, R, Miraldo, L, Ovejero, R, Berger, G and Bernardi, D (2024) Effects of temperature on the development of Rachiplusia nu (Lepidoptera: Noctuidae) and Chrysodeixis includens (Lepidoptera: Noctuidae) and implications on population growth in Brazil. Environmental Entomology 53, 10931101. doi:10.1093/ee/nvae097.CrossRefGoogle ScholarPubMed
Perfectti, F (2002) Especiación: Modos y Mecanismos. Soler, M (ed.). Evolución, La Base de la Biología. Granada, España: Proyecto Sur de Ediciones. 307321.Google Scholar
Reis, AC, Steinhaus, EA, Godoy, DN, Warpechowski, LF, Diniz, LHM, Dallanora, A, Horikoshi, RJ, Ovejero, RFL, Martinelli, S, Berger, GU, Head, GP, Dourado, PM and Bernardi, O (2024) Genetic basis of resistance to Cry1Ac in Rachiplusia nu (Lepidoptera: Noctuidae): Inheritance mode, cross-resistance patterns and fitness cost. Pest Management Science. doi:10.1002/ps.8475Google ScholarPubMed
Rhainds, M (2010) Female mating failures in insects. Entomologia Experimentalis Et Applicata 136, 211226. doi:10.1111/j.1570-7458.2010.01032.x.CrossRefGoogle Scholar
Rimoldi, F, Fogel, MN, Schneider, MI and Ronco, AE (2012) Lethal and sublethal effects of cypermethrin and methoxyfenozide on the larvae of Rachiplusia nu (Guenee) (Lepidoptera: Noctuidae). Insect Resistant Development 56, 200208. doi:10.1080/07924259.2011.591177.Google Scholar
Sistema de Información Simplificado Agrícola (SISA) (2021) Soja 2020–2021. Dirección de Certificación del INASE. https://www.argentina.gob.ar/sites/default/files/if_sisa_final_soja_2020_2021.pdf (accessed 10 October 2024).Google Scholar
Souza Ribas, N, McNeil, JN, Araújo, HD, de Souza Ribas, B and Lima, E (2022) The Effect of resistance to Bt corn on the reproductive output of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 13, 196. doi:10.3390/insects13020196.CrossRefGoogle ScholarPubMed
Suárez, LL, Casmuz, AS, Vera, MA, Romero, I, Medrano, CM, Cejas Marchi, E, Giménez Sardi, JA, Álvarez Paz, P, Campero, N, Gastaminza, GA, Scalora, F, Devani, MR and Murúa, MG (2023) Rachiplusia nu: Desafíos y perspectivas del fenómeno de resistencia de esta especie a la soja Bt. In Devani, MR, Ledesma, F and Sánchez, JR. (eds). El Cultivo de la Soja En El Noroeste Argentino. Campaña 2022-2023. Publicación Especial Soja EEAOC Nº 71. EEAOC, Las Talitas: Tucumán, Argentina, 97105. https://www.eeaoc.gob.ar/?publicacion=la-oruga-medidora (accessed 10 October 2024).Google Scholar
Tabashnik, BE, Brévault, T and Carrière, Y (2013) Insect resistance to Bt crops: Lessons from the first billion acres. Nature Biotechnology 31, 510521. doi:10.1038/nbt.2597.CrossRefGoogle ScholarPubMed
Tabashnik, BE and Carrière, Y (2017) Surge in insect resistance to transgenic crops and prospects for sustainability. Nature Biotechnology 35, 926935. doi:10.1038/nbt.3974.CrossRefGoogle ScholarPubMed
Tabashnik, BE, Gassmann, AJ, Crowder, DW and Carrière, Y (2008) Insect resistance to Bt crops: Evidence versus theory. Nature Biotechnology 26, 199202. doi:10.1038/nbt1382.CrossRefGoogle ScholarPubMed
van Rensburg, JBJ (2007) First report of field resistance by the stem borer, Busseola fusca (Fuller) to Bt-transgenic maize. South African Journal of Plant and Soil 24, 147151. doi:10.1080/02571862.2007.10634798.CrossRefGoogle Scholar
Vélez, AM, Spencer, TA, Alves, AP, Crespo, ALB and Siegfried, BD (2014) Fitness costs of Cry1 Fresistance in fall armyworm, Spodoptera frugiperda. Journal of Applied Entomology 138, 315325. doi:10.1111/jen.12095.CrossRefGoogle Scholar
Vera, MA, Casmuz, AS, Fadda, LA, Fogliata, SV, Marchi, EC, Murúa, MG and Gastaminza, GA (2018) Susceptibilidad de lepidópteros en soja Bt Glycine max (L.) Merr. in XXVII Congreso Brasilero y X Congreso Latino-Americano de Entomología. Gramado, Brasil: Estación Experimental Agroindustrial Obispo Colombres.Google Scholar
Vera, MA, Casmuz, AS, Murúa, MG, Suárez, LL, Cejas Marchi, E, Medrano, CM, Romero, I, Ale Reuter, JL, Margagliotti, E, Gastaminza, GA, Scalora, FS and Devani, MR (2022) Susceptibilidad de Rachiplusia nu (Lepidoptera: Noctuidae) a soja Bt. Devani, MR, Ledesma, F and Sánchez, JR. (eds). El Cultivo de la Soja En El Noroeste Argentino. Campaña 2021-2022. Publicación Especial Soja EEAOC Nº 67. EEAOC, Las Talitas:Tucumán, Argentina. 97100. https://www.eeaoc.gob.ar/?publicacion=capitulo-d2-susceptibilidad-de-rachiplusia-nu-lepidoptera-noctuidae-a-soja-bt (accessed 10 October 2024).Google Scholar
Wu, H, Wu, K, Wang, D and Guo, Y (2006) Flight potential of pink bollworm, Pectinophora gossypiella Saunders (Lepidoptera: Gelechiidae). Environmental Entomology 35, 887893. doi:10.1603/0046-225X-35.4.887.CrossRefGoogle Scholar
Wu, K, Guo, Y and Gao, S (2002) Evaluation of the natural refuge function for Helicoverpa armigera (Lepidoptera: Noctuidae) within Bacillus thuringiensis transgenic cotton growing areas in north China. Journal of Economic Entomology 95, 832837. doi:10.1603/0022-0493-95.4.832.CrossRefGoogle ScholarPubMed
Xue, WX, Sun, JT, Witters, J, Vandenhole, M, Dermauw, W, Bajda, SA, Simma, EA and Van Leeuwen, T (2023) Incomplete reproductive barriers and genomic differentiation impact the spread of resistance mutations between green‐and red‐colour morphs of a cosmopolitan mite pest. Molecular Ecology 32, 42784297. doi:10.1111/mec.16994.CrossRefGoogle ScholarPubMed