Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-22T13:05:37.631Z Has data issue: false hasContentIssue false

Factors limiting the species richness of bees in Saharan Africa

Published online by Cambridge University Press:  09 December 2008

S. Patiny*
Affiliation:
Faculté universitaire des Sciences agronomiques de Gembloux, Entomologie fonctionnelle et évolutive, Passage des Déportés 2, B-5030 Gembloux, Belgique
D. Michez
Affiliation:
Université de Mons Hainaut, Laboratoire de Zoologie, Place du Parc 20, B-7000 Mons, Belgique
M. Kuhlmann
Affiliation:
The Natural History Museum, Department of Entomology, Cromwell Road, London, SW7 5BD, UK
A. Pauly
Affiliation:
Faculté universitaire des Sciences agronomiques de Gembloux, Entomologie fonctionnelle et évolutive, Passage des Déportés 2, B-5030 Gembloux, Belgique
Y. Barbier
Affiliation:
Faculté universitaire des Sciences agronomiques de Gembloux, Gestion des Ressources forestières et des Milieux naturels, Passage des Déportés 2, B-5030 Gembloux, Belgique
*
*Author for correspondence Fax: +3281622312 E-mail: [email protected]

Abstract

There is a severe shortage of knowledge of bee biogeography. Some former studies have highlighted a link between bee diversity and xeric ecosystems, but we know practically nothing of the macro-ecological factors driving bee diversity. The present study aims to analyse the main macro-ecological factors driving bee species-richness in the Saharan region. Our dataset includes 25,000+ records for localities in Africa, between 37° and 10°N. Maps and GIS were used to get a first overview of the distribution of the studied taxa. Partial least squares analysis (PLS) was used to study the impact of a set of ecological factors on the bee species richness (SR). The mapping highlighted the clustering of the highest bee SR values in some parts of the Saharan area (e.g. Maghreb, western Africa). In Central Sahara, there is an obvious topological coincidence of the high SR, the local mountain chains and the inland waters. The PLS helped to quantify the relationships between bee SR and a set of eco-climatic variables. It also highlighted a residual variance not explained by the considered descriptors. Our results recover the tight link between bee SR and xeric ecosystems. They also suggest that, within these ecosystems, bee SR is driven by an optimum of the energy-water balance (on which adjustment is allowed by the above gradients).

Type
Research Paper
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J.M. & Faure, H. (1997) Preliminary vegetation maps of the World since the last glacial maximum: An Aid to Archaeological Understanding. Journal of Archaeological Science 24, 623647.CrossRefGoogle Scholar
Alexander, B.A. (1992) An exploratory analysis of cladistics relationships within the superfamily Apoidea, with special reference to sphecid wasps (Hymenoptera). Journal of Hymenoptera Research 1(1), 2562.Google Scholar
Almeida, E.A.B. (2007) Systematics and biogeography of Colletidae (Hymenoptera, Apoidea). PhD thesis, Cornell University, Ithaca, NY.Google Scholar
Amer, S.A.M. & Kumazawa, Y. (2005) Mitochondrial DNA sequences of the Afro-Arabian spiny-tailed lizards (genus Uromastyx; family Agamidae): phylogenetic analyses and evolution of gene arrangements. Biological Journal of the Linnean Society 85, 247260.CrossRefGoogle Scholar
Andrews, P. & O'Brien, E.M. (2000) Climate, vegetation, and predictable gradients in mammal species richness in southern Africa. Journal of Zoology 251, 205231.CrossRefGoogle Scholar
Ashman, T.L., Knight, T.M., Steets, J.A., Amarasekare, P. & Burd, M. (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85(9), 24082421.CrossRefGoogle Scholar
Barbier, Y., Rasmont, P., Dufrêne, M. & Sibert, J.M. (2005) Data Fauna-Flora. Guide d'utilisation. 106 pp. Mons, Belgium, Université de Mons-Hainaut.Google Scholar
Bayless, M.K. (2002) Monitor lizards: a pan-African check-list of their zoogeography (Sauria: Varanidae: Polydaedalus). Journal of Biogeography 29, 16431701.CrossRefGoogle Scholar
Bini, L.M., Felizola Diniz-Filho, J.A. & Hawkins, B.A. (2004) Macroecological explanations for differences in species richness gradients: a canonical analysis of South American birds. Journal of Biogeography 31, 18191827.CrossRefGoogle Scholar
Biesmeijer, J.-C., Roberts, S.P.M., Reemer, M., Ohlemüller, R., Edwards, M., Peeters, T., Schaffers, A.P., Potts, S.G., Kleukers, R., Thomas, C.D., Settele, J. & Kunin, W.E. (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351354.CrossRefGoogle ScholarPubMed
Buchmann, S.L. & Ascher, J.S. (2005) The plight of pollinating bees. Bee World 2005, 7174.CrossRefGoogle Scholar
Buchmann, S.L. & Nabhan, G.P. (1996) The Forgotten Pollinators. 292 pp. Washington, DC, Shearwater Books, Island Press.Google Scholar
Cane, J.H. & Tepedino, V.J. (2001) Causes and extent of declines among native North American invertebrate pollinators: detection, evidence, and consequences. Conservation Ecology 5, 1.CrossRefGoogle Scholar
CBD (2001) The international initiative for the conservation and sustainable use of pollinators: a proposal for a plan of action. SBSTTA 7th Meeting, Item 5.1.Google Scholar
Ceballos, G. & Brown, J. (1995) Global patterns of mammalian diversity, endemism and endangerment. Conservation Biology 9, 559568.CrossRefGoogle Scholar
Coleman, B.D., Mares, M.A., Willig, M.R. & Hsieh, Y.-H. (1982) Randomness, area, and species richness. Ecology 63, 11211133.CrossRefGoogle Scholar
Colwell, R.K. (2006) EstimateS 8.0. University of Connecticut. http://viceroy.eeb.uconn.edu/EstimateS.Google Scholar
Colwell, R.K., Mao, C.X. & Chang, J. (2004) Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85, 27172727.CrossRefGoogle Scholar
Costanza, R., d'Arge, R., deGroot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P. & van den Belt, M. (1997) The value of the world's ecosystem services and natural capital. Nature 387, 253259.CrossRefGoogle Scholar
Daly, H.V. (1988) Bees of the new genus Ctenoceratina in Africa south of the Sahara (Hymenoptera, Apoidea). University of California publications in Entomology 108, 169.Google Scholar
Danforth, B.N. (1999) Emergence dynamics and bet hedging in a desert bee, Perdita portalis. Proceedings of the Royal Society of London 266, 19851994.CrossRefGoogle Scholar
Danforth, B.N., Sipes, S.D., Fang, J. & Brady, S.G. (2006) The history of early bee diversification based on five genes plus morphology. Proceedings of the National Academy of Sciences of the United States of America 103(41), 1511815123.CrossRefGoogle ScholarPubMed
De Lattin, G. (1967) Grundriss der Zoogeographie. 602 pp. Gustav Fischer Verlag.Google Scholar
Enkulu, L. (1988) Les Megachilidae (Hymenoptera, Apoidea) d'Europe et d'Afrique. Une étude écologique et agronomique. PhD thesis, Faculté des Sciences agronomiques de l'état, Gembloux, Belgium.Google Scholar
FAO (1988) Agroclimatological data for Africa. Vol. 1: Countries north of the equator – Données agroclimatologiques pour l'Afrique. Vol. 1: Pays au nord de l'Equateur. FAO Plant Production and Protection Series.Google Scholar
Fellendorf, M., Mohra, C. & Paxton, R.J. (2004) Devasting effects of river flooding to the ground-nesting bee, Andrena vaga (Hymenoptera: Andrenidae), and its associated fauna. Journal of Insect Conservation 8(4), 311312.CrossRefGoogle Scholar
Gaston, K.E. (2000) Global patterns in biodiversity. Nature 405, 220227.CrossRefGoogle ScholarPubMed
Gathmann, A. & Tscharntke, T. (2002) Foraging ranges of solitary bees. Journal of Animal Ecology 71, 757764.CrossRefGoogle Scholar
Gotelli, N. & Colwell, R.K. (2001) Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4, 379391.CrossRefGoogle Scholar
Greenbaum, E., Andrew, C.C. & Raxworthy, C.J. (2006) A revision of sub-Saharan Chalcides (Squamata, Scincidae), with redescriptions of two east-African species. Herpetologica 62, 7189.CrossRefGoogle Scholar
Greenleaf, S.S., Williams, N.M., Winfree, R. & Kremen, C. (2007) Bee foraging ranges and their relationship to body size. Oecologia 153, 589596.CrossRefGoogle ScholarPubMed
Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guégan, J.F., Kaufman, D.M., Kerr, J.T., Mittelbach, G.G., Oberdorff, T., O'Brien, E.M., Porter, E.E. & Turner, J.R.G. (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 31053117.CrossRefGoogle Scholar
Holzschuh, A.A.V. (2006) Bees and wasps in agricultural landscapes: effects of dispersal corridors and land-use intensity at multiple spatial scales. PhD thesis, Göttingen George University, Göttingen, Germany.Google Scholar
Humboldt (von), A. (1808) Ansichten der Natur mit wissenschaftlichen Erlauterungen. Tübingen, Germany, J.G. Cotta.Google Scholar
Kevan, P.G. & Phillips, T.P. (2001) The economic impacts of pollinator declines: an approach to assessing the consequences. Conservation Ecology 5, 8.CrossRefGoogle Scholar
Kinzig, A.P., Ryan, P., Etienne, M., Allison, H., Elmqvist, T. & Walker, B.H. (2006) Resilience and regime shifts: assessing cascading effects. Ecology and Society 11, 20.CrossRefGoogle Scholar
Koren, I., Kaufman, Y.J., Washington, R., Todd, M.C., Rudich, Y., Vanderlei, M.J. & Rosenfeld, D. (2006) The Bodélé depression: a single spot in the Sahara that provides most of the mineral dust to the Amazon forest. Environmental Research Letters 1, 5.CrossRefGoogle Scholar
Kuhlmann, M. (2005) Diversity, distribution patterns and endemism of southern African bees (Hymenoptera: Apoidea). pp. 167172in Huber, B.A., Sinclair, B.J. & Lampe, K.-H. (Eds) African Biodiversity: Molecules, Organisms, Ecosystems. Bonn, Germany, Springer Verlag.CrossRefGoogle Scholar
Leblanc, M.J., Leduc, C., Stagnitti, F., Oevelen, P.J., Jones, C., Mofor, L.A., Razack, M. & Favreau, G. (2006a) Evidence for Megalake Chad, north-central Africa, during the late Quaternary from satellite data. Palaeogeography, Palaeoclimatology, Palaeoecology 230, 230242.CrossRefGoogle Scholar
Leblanc, M.J., Favreau, G., Maley, J., Nazoumou, Y., Leduc, C., Stagnitti, F., Oevelen, P.J., Delclaux, F. & Lemoalle, J. (2006b) Reconstruction of Megalake Chad using Shuttle Radar Topographic Mission data. Palaeogeography, Palaeoclimatology, Palaeoecology 239, 1627.CrossRefGoogle Scholar
Losey, J.E. & Vaughan, M. (2006) The economic value of ecological services provided by insects. Bioscience 56, 311323.CrossRefGoogle Scholar
Marchant, R. & Hooghiemstra, H. (2004) Rapid environmental change in African and South American tropics around 4000 years before present: a review. Earth-Science Reviews 66, 217260.CrossRefGoogle Scholar
Médail, F. & Quézel, P. (1997) Hot-spots analysis for conservation of plant biodiversity in the Mediterranean Basin. Annals of the Missouri Botanical Garden 84, 112127.CrossRefGoogle Scholar
Médail, F. & Quézel, P. (1999) Biodiversity hotspots in the Mediterranean basin: setting global conservation priorities. Conservation Biology 13, 15101513.CrossRefGoogle Scholar
Michener, C.D. (1944) Comparative external morphology, phylogeny, and a classification of the bees (Hymenoptera). Bulletin of the American Museum of Natural History 82(6), 151326.Google Scholar
Michener, C.D. (1979) Biogeography of the bees. Annals of the Missouri Botanical Garden 66, 277342.CrossRefGoogle Scholar
Michener, C.D. (1981) Classification of the bee family Melittidae with a review of species of Meganomiinae. Contribution of the American Entomological Institute 18, 1135.Google Scholar
Michener, C.D. (2007) The Bees of the World. 992 pp. The Johns Hopkins University Press, Baltimore.CrossRefGoogle Scholar
Michez, D. & Eardley, C.D. (2007) Monographic revision of the bee genus Melitta Kirby 1802 (Hymenoptera: Apoidea: Melittidae). Annales de la Société entomologique de France 43, 379440.CrossRefGoogle Scholar
Michez, D. & Patiny, S. (2005) World revision of the oil-collecting bee genus Macropis Panzer 1809 (Hymenoptera, Apoidea, Melittidae) with a description of a new species from Laos. Annales de la Société entomologique de France 41, 1528.CrossRefGoogle Scholar
Michez, D., Terzo, M. & Rasmont, P. (2004a) Révision des espèces ouest-paléarctiques du genre Dasypoda Latreille 1802 (Hymenoptera, Apoidea, Melittidae). Linzer Biologische Beiträge 36, 847900.Google Scholar
Michez, D., Terzo, M. & Rasmont, P. (2004b) Phylogénie, biogéographie et choix floraux des abeilles oligolectiques du genre Dasypoda Latreille 1802 (Hymenoptera, Apoidea, Melittidae). Annales de la Société entomologique de France 40, 421435.CrossRefGoogle Scholar
Michez, D., Else, G.R. & Roberts, S.P.M. (2007) Biogeography, floral choices and re-description of Promelitta alboclypeata (Friese 1900) (Hymenoptera, Apoidea, Melittidae). African Entomology 15, 197203.CrossRefGoogle Scholar
Michez, D., Patiny, S., Rasmont, P., Timmermann, K. & Vereecken, N. (2008) Phylogeny and host-plant evolution in Melittidae s.l. (Hymenoptera: Apoidea). Apidologie 39, 146162.CrossRefGoogle Scholar
NGS (2001) Terrestrial ecoregions of the World. National Geographic Society, http://www.nationalgeographic.com/wildworld/terrestrial.html (accessed October 2006).Google Scholar
Norden, B.B., Krombein, K.V., Deyrup, M.A. & Edirisinghe, J.P. (2003) Biology and Behavior of a Seasonally Aquatic Bee, Perdita (Alloperdita) floridensis Timberlake (Hymenoptera: Andrenidae: Panurginae). Journal of the Kansas Entomological Society 76(2), 236249.Google Scholar
Olago, D.O. (2001) Vegetation changes over palaeo-time scales in Africa. Climate Research 17, 105121.CrossRefGoogle Scholar
Olschewski, R., Tscharntke, T., Benítez, P.C., Schwarze, S. & Klein, A. (2006) Economic evaluation of pollination services comparing coffee landscapes in Ecuador and Indonesia. Ecology and Society 11, 7.CrossRefGoogle Scholar
Patiny, S. (2001) Monographie des Panurginae de l'ancien monde (Hymenoptera: Apoidea, Andrenidae). PhD thesis, Faculté universitaire des Sciences agronomiques de Gembloux, Gembloux, Belgium.Google Scholar
Patiny, S. & Michez, D. (2006) Phylogenetic analysis of Systropha Illiger, 1806 (Hymenoptera: Halictidae) and description of a new subgenus. Annales de la Société entomologique de France 42, 2744.CrossRefGoogle Scholar
Patiny, S. & Michez, D. (2007) Biogeography of bees (Hymenoptera, Apoidea) in Sahara and the Arabian deserts. Insect Systematics & Evolution 38, 1934.Google Scholar
Pauly, A. (1990) Classification des Nomiinae Africains (Hymenoptera, Apoidea, Halictidae). 206 pp. Tervuren, Belgium, Musée royal de l'Afrique centrale.Google Scholar
Pesenko, Y.A. & Pauly, A. (2005) Monograph of the bees of the subfamily Nomioidinae (Hymenoptera: Apoidea) of Africa (excluding Madagascar). Annales de la Société entomologique de France 41, 129236.CrossRefGoogle Scholar
Pimentel, D., Wilson, C., McCullum, C., Huang, R., Dwen, P., Flack, J., Tran, Q., Saltman, T. & Cliff, B. (1997) Economic and environmental benefits of biodiversity. Bioscience 47, 747757.CrossRefGoogle Scholar
Quézel, P. (1978) Analysis of the flora of Mediterranean and saharan Africa. Annals of the Missouri Botanical Garden 65, 479534.CrossRefGoogle Scholar
Radchenko, V.G. & Pesenko, Y.A. (1994) Biology of Bees (Hymenoptera, Apoidea). 350 pp. St. Petersburg, Russian Academy of Siences, Zoological Institut.Google Scholar
Rasmont, P. & Mersch, P. (1988) Première estimation de la dérive faunique chez les bourdons de la Belgique (Hymenoptera: Apidae). Annales de la Société royale zoologique de Belgique 118, 141147.Google Scholar
Rasmont, P., Leclercq, J., Jacob-Remacle, A., Pauly, A. & Gaspar, C. (1993) The faunistic drift of Apoidea in Belgium. pp. 6587in Bruneau, E. (Ed.) Bees for Pollinisation. Brussels, Belgium, Commission of the European Communities.Google Scholar
Roubik, D.W. (1989) Ecology and Natural History of Tropical Bees. 528 pp. Cambridge, UK, Cambridge University Press.CrossRefGoogle Scholar
Sipes, S.D. & Tepedino, V. (2005) Pollen-host specificity and evolutionary patterns of host switching in a clade of specialist bees (Apoidea: Diadasia). Biological Journal of the Linnean Society 86, 487505.CrossRefGoogle Scholar
Terzo, M. (2000) Classification phylogénétique des Cératines du monde et monographie de la région Ouest-Paléarctique et de l'Asie centrale (Hymenoptera, Apoidea, Xylocopinae: Ceratina Latreille). PhD thesis, Université de Mons-Hainaut, Mons, Belgium.Google Scholar
White, F. (1986). Vegetation of Africa – a descriptive memoire to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa. Natural Resources Research Report 20. Unesco, Paris.Google Scholar
Williams, P.H. (1985). On the distribution of bumble bees (Hymenoptera, Apidae) with particular regard to patterns within the British Isles. PhD thesis, Department of Applied Biology, University of Cambridge, Cambridge, UK.Google Scholar
Williams, P.H. (1998). An annotated checklist of bumble bees with an analysis of patterns of description (Hymenoptera: Apidae, Bombini). Bulletin of the Natural History Museum 67, 79152.Google Scholar