Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-22T14:05:37.616Z Has data issue: false hasContentIssue false

Factors influencing the Action of Dust Insecticides

Published online by Cambridge University Press:  10 July 2009

W. A. L. David
Affiliation:
A.R.C. Unit of Insect Physiology, Cambridge.
B. O. C. Gardiner
Affiliation:
A.R.C. Unit of Insect Physiology, Cambridge.

Extract

The methods used to investigate the properties of dusts are described and, in a theoretical section, the relevance of the various physical properties to insecticidal action are considered.

In order to investigate the effect of toxic and non-toxic dusts on insects the experimental procedure was simplified to eliminate all difficulties associated with the formation of uniform dust clouds and deposits. In problems relating to the adherence of the dusts to insects the actual quantity of dust was measured either by weighing the insects before and after dusting or by dyeing the dust with Sudan III and determining the quantity colorimetrically. The experiments were all conducted under known conditions of temperature and humidity.

Non-toxic dusts killed insects by causing them to lose water. Not all non-toxic powders were equally effective when conditioned to the same relative humidity. All were without effect at saturated humidity and became progressively more rapid in action as the humidity at which the test was carried out was decreased (p. 32).

The non-toxic dusts caused the insects to lose water by abrading certain areas of the cuticle ; the more extensive the abrasion the more quickly the insects died (p. 27).

To be effective as an abrasive the dust must be hard and finely ground and, perhaps also, sharply angular. Thus materials which ranked high in Moh's scale of hardness were in general more effective than soft materials and hard materials became quite ineffective unless they contained material below about 10 μ, diameter. Presumably the coarser materials could not gain access to the articulations, etc., where abrasion usually occurred. This effect can be seen clearly with carborundum powders. Sharply angular glass was more effective than the same powder converted into rounded spheres (pp. 25–31).

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1950

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide.—J. econ. Ent., 18, pp. 265267.CrossRefGoogle Scholar
Alexander, P., Kitchener, J. A. & Briscoe, H. V. A. (1944a). Inert dust insecticides. 1, Mechanism of action.—Ann. appl. Biol., 31, pp. 143149.CrossRefGoogle Scholar
Alexander, P., Kitchener, J. A. & Briscoe, H. V. A. (1944b). Inert dust insecticides. II. The nature of effective dusts.—Ann. appl. Biol., 31, pp. 150156.CrossRefGoogle Scholar
Alexander, P., Kitchener, J. A. & Briscoe, H. V. A. (1944c). Inert dust insecticides. III. The effect of dusts on stored products pests other than Calandra granaria.—Ann. appl. Biol., 31, pp. 156159.CrossRefGoogle Scholar
Amer. Soc. Test. Mat. (1941). Symposium on new methods for particle size determination in the subsieve range. 111 pp. Philadelphia, pa.CrossRefGoogle Scholar
Andersen, K. T. (1934). Biologie des Kornkäfers (Calandra granaria L.).—Nachr. SchädlBekämpf., 9, pp. 105131.Google Scholar
Back, E. A. & Cotton, R. T. (1926). The Granary Weevil.—Bull. U.S. Dep. Agric., no. 1393, 35 pp.Google Scholar
Bertholf, L. M. & Pilson, J. E. (1941). Studies on toxicity to honeybees of acid lead arsenate, calcium arsenate, phenothiazine and cryolite.—J. econ. Ent., 34, pp. 2433.CrossRefGoogle Scholar
Birch, L. C. (1945). The influence of temperature on the development of the different stages of Calandra oryzae L. and Rhizopertha dominica Fab.—Aust. J. exp. Biol. med. Sci., 23, pp. 2935.CrossRefGoogle Scholar
Bliss, C. I. (1935). The calculation of the dosage-mortality curve.—Ann. appl. Biol., 22, pp. 134167.CrossRefGoogle Scholar
Borchers, F. & May, E. (1935). Betrachtungen und Untersuchungen über die physikalischen Eigenschaften staubförmiger Pflanzenschutzmittel.—Mitt. biol. Reichsanst., 50, pp. 555.Google Scholar
Busvine, J. R. & Barnes, S. (1947). Observations on mortality of insects exposed to dry insecticidal films.—Bull. ent. Res., 38, pp. 8190.CrossRefGoogle ScholarPubMed
Campau, E. J., Wilson, H. F. & Janes, R. L. (1942). Increased toxicity with rotenone dusts.—Soap, 18, no. 8, pp. 100101, 103.Google Scholar
Chiu, S. F. (1939). Toxicity studies of so-called “inert” materials with the bean weevil Acanthoscelides obtectus (Say).—J. econ. Ent., 32, pp. 240248.CrossRefGoogle Scholar
Dalla Valle, J. M. (1943). Micromeritics—the technology of fine particles. 428 pp. London, Pitman.Google Scholar
David, W. A. L. (1946a). The quantity and distribution of spray collected by insects flying through insecticidal mists.—Ann. appl. Biol., 33, pp. 133141.CrossRefGoogle ScholarPubMed
David, W. A. L. (1946b). Factors influencing the interaction of insecticidal mists and flying insects. II. The production and behaviour of kerosene base insecticidal spray mists and their relation to flying insects.—Bull. ent. Res., 37, pp. 128.CrossRefGoogle Scholar
Dean, E. W. & Starke, O. D. (1920). A convenient method for the determination of water in petroleum and other organic emulsions.—Industr. Engng Chem., 12, pp. 486490.CrossRefGoogle Scholar
Ewer, D. W. & Ewer, R. F. (1942). The biology and behaviour of Ptinus tectus Boie. (Coleoptera, Ptinidae) a pest of stored products. III. The effect of temperature and humidity on oviposition, feeding and duration of life cycle.—J. exp. Biol., 18, pp. 290305.CrossRefGoogle Scholar
Fitzgibbon, M. (1943). Seed disinfection. The determination of the adhesiveness of seed dressings to cereal seeds.—J. Soc. chem. Ind., 62, pp. 811.CrossRefGoogle Scholar
Germar, B. (1936). Versuche zur Bekämpfung des Kornkäfers mit Staubmitteln.—Z. angew. Ent., 22, pp. 603630.CrossRefGoogle Scholar
Good, N. E. (1936). The flour beetles of the genus Tribolium.—Tech. Bull. U.S. Dep. Agric., no. 498, 58 pp.Google Scholar
Goodhue, L. D. (1937). Particle size of commercial calcium arsenates by sedimentation analysis.—J. econ. Ent., 30, pp. 466474.CrossRefGoogle Scholar
Gregg, S. J. (1947). Absorbtion and heat of wetting methods of surface area measurements.—Trans. Instn chem. Engrs, Lond., 25, Suppl. (Symp. Particle-size Anal.) pp. 4046.Google Scholar
Gunn, D. L. & Knight, R. H. (1945). The biology and behaviour of Ptinus tectus Boie. a pest of stored products. VI. Culture conditions.—J. exp. Biol., 21, pp. 132143.CrossRefGoogle Scholar
Hamilton, A. G. (1937). The mechanism of respiration of locusts and its bearing on the problem of the inhalation of poison dusts.—Bull. ent. Res., 28, pp. 5368.CrossRefGoogle Scholar
Heuberger, J. W. (1942). The tenacity of protective fungicides.—Chron. bot., 7, pp. 910.Google Scholar
Heuschmann, O. (1929). Ueber die electrischen Eigenschaften des Insektenhaares.—Z. vergl. Physiol., 10, pp. 594664.CrossRefGoogle Scholar
Hewlett, P. S. (1947). The toxicities of three petroleum oils to the grain weevils.—Ann. appl. Biol., 34, pp. 575585.CrossRefGoogle Scholar
Heywood, H. (1938). Measurement of the fineness of powdered materials (and discussion).—Proc. Instn mech. Engrs, Lond., 140, pp. 257347.CrossRefGoogle Scholar
Heywood, H. (1947). The scope of particle size analysis and standardisation.—Trans. Instn chem. Engrs, Lond., 25, Suppl. (Symp. Particle-size Anal.) pp. 1424.Google Scholar
Hickin, N. E. (1942). The food and water requirements of Ptinus tectus Boieldieu (Coleopt., Ptinidae).—Proc. R. ent. Soc. Lond., (A) 17, pp. 99108.Google Scholar
Hinton, H. E. (1941). The Ptinidae of economic importance.—Bull. ent. Res., 31, pp. 331381.CrossRefGoogle Scholar
Hockenyos, G. L. (1933). Effect of dusts on the oriental roach.—J. econ. Ent., 26, pp. 792794.CrossRefGoogle Scholar
Hodgman, C. D. (1945). Handbook of Chemistry and Physics. 29th edn. 2640 pp. Cleveland, Ohio, Chemical Rubber Publ. Co.Google Scholar
Howe, R. W. (1943). Life history data for Ptinus tectus Boie. at 70 per cent. relative humidity at 21°C. and 25°C.—Proc. R. ent. Soc. Lond., (A) 18, pp. 6365.Google Scholar
Hunt, C. R. (1947). Toxicity of insecticide dust diluents and carriers to larvae of the Mexican Bean Beetle.—J. econ. Ent., 40, pp. 215219.CrossRefGoogle ScholarPubMed
Lee, F. M. & Nurse, R. W. (1939). The specific surface of fine powders.—J. Soc. chem. Ind., 58, pp. 277283.Google Scholar
Lee, F. M. & Nurse, R. W. (1947). Permeability methods of fineness measurement.—Trans. Instn chem. Engrs, Lond., 25, Suppl. (Symp. Particle-size Anal.) pp. 4756.Google Scholar
McGovran, E. R., Cassil, C. C. & Mayer, E. C. (1940). Particle size of paris green as related to toxicity and repellency to the Mexican Bean Beetle.—J. econ. Ent., 33, pp. 525531.CrossRefGoogle Scholar
McGregor, E. A. (1934). The relationship of fineness of sulphur particles to effectiveness against the citrus thrips in central California.—J. econ. Ent., 27, pp. 543546.CrossRefGoogle Scholar
MacLeod, G. F. & Smith, L. M. (1943). Deposits of insecticidal dusts and diluents on charged plates.—J. agric. Res., 66, pp. 8795.Google Scholar
Mote, D. C., Wilcox, J. & Davis, E. G. (1926). The natural “cleaning up” habit of insects.—J. econ, Ent., 19, pp. 745748.CrossRefGoogle Scholar
Parkin, E. A. (1944). Control of the granary weevil with finely ground mineral dusts.—Ann. appl. Biol., 31, pp. 8488.CrossRefGoogle Scholar
Potter, C. (1935). The biology and distribution of Rhizopertha dominica (Fab.)Trans. R. ent. Soc. Lond., 83, pp. 449482.CrossRefGoogle Scholar
Roller, P. S. (1930). The bulking properties of microscopic particles.—Industr. Engng Chem., 22, pp. 12061208.CrossRefGoogle Scholar
Roy, D. N. & Ghosh, S. M. (1944). The mechanism of action of a contact insecticide.—Bull. ent. Res., 35, pp. 161170.CrossRefGoogle Scholar
Shafer, G. D. (1915). How contact insecticides kill. III.—Tech. Bull. Mich. agric. Exp. Sta., no. 21, 67 pp.Google Scholar
Shipitzina, N. K. (1935). Grandeur maximum et minimum des particles pouvant être avalées par les larves d'Anopheles maculipennis messeae. [In Russian, with French summary].—Med. Parasit., 4, pp. 381389.Google Scholar
Skinner, D. G., Boas-Traube, S., Brown, R. L. & Hawksley, P. G. W. (1944). Method of determining particle size in sub-sieve range.—Brit. Coll. Owners Res. Ass. & Brit. Coal Util. Res. Ass., pp. 169. London.Google Scholar
Smith, C. L. (1936). The relation between the degree of fineness of pyrethrum powder produced by different periods of grinding to toxicity to insects and to deterioration by light and air.—J.N.Y. ent. Soc., 44, pp. 317339.Google Scholar
Smith, C. M. & Goodhue, L. D. (1942). Particle size in relation to insecticide efficiency.—Industr. Engng Chem., 34, pp. 490493.CrossRefGoogle Scholar
Streeter, L. R. & Rankin, W. H. (1930). The fineness of ground sulphur sold for dusting and spraying.—Tech. Bull. N.Y. St. agric. Exp. Sta., no. 160, 16 pp.Google Scholar
Voelkel, H. (1929). Die Bestimmung der Haftfähigkeit von Stäubemitteln.—Arb. biol. Reichsanst., 17, pp. 253272.Google Scholar
Webb, J. E. (1945a). The penetration of derris through the spiracles and cuticle of Melophagus ovinus, L.—Bull ent. Res., 36, pp. 1522.CrossRefGoogle Scholar
Webb, J. E. (1945b). On the respiratory mechanism of Melophagus ovinus L.—Proc. zool. Soc. Lond., 115, pp. 218250.CrossRefGoogle Scholar
Whitman, V. E. (1926). Studies in the electrification of dust clouds.—Phys. Rev., 28, pp. 12871301.CrossRefGoogle Scholar
Wigglesworth, V. B. (1944). Action of inert dusts on insects.—Nature, Lond., 153, pp. 493494.CrossRefGoogle Scholar
Wigglesworth, V. B. (1945). Transpiration through the cuticle of insects.—J. exp. Biol., 21, pp. 97114.CrossRefGoogle Scholar
Wigglesworth, V. B. (1947). The site of action of inert dusts on certain beetles infesting stored products.—Proc. R. ent. Soc. Lond., (A) 22, pp. 6569.Google Scholar
Wilcox, J. (1926). A suggestion as to how phytophagous insects may ingest powdered poison.—J. econ. Ent., 19, 189190.Google Scholar
Wilcoxon, F. & McCallan, S. E. A. (1931). The fungicidal action of sulphur. III. Physical factors affecting the efficiency of dusts.—Contr. Boyce Thompson Inst., 3, pp. 509528.Google Scholar
Wilson, H. F. & Campau, E. J. (1943). The effect of oil in rotenone dust mixtures.—Soap, 19, no. 6, pp. 123, 125, 127.Google Scholar
Wilson, H. F., Janes, R. J. & Campau, E. J. (1944). Electrostatic charge effects produced by insecticidal dusts.—J. econ. Ent., 37, pp. 651655.CrossRefGoogle Scholar
Wilson, R. E. & Fuwa, T. (1922). Humidity equilibria of various common substances.—Industr. Engng Chem., 14, pp. 913918.CrossRefGoogle Scholar
Zacher, F. (1937). Neue Untersuchungen über die Einwirkung oberflächenaktiver Pulver auf Insekten.—Verh. dtsch. zool. Ges., pp. 264271.Google Scholar