Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-22T08:45:16.120Z Has data issue: false hasContentIssue false

Evaluation of fipronil and imidacloprid as bait active ingredients against fungus-growing termites (Blattodea: Termitidae: Macrotermitinae)

Published online by Cambridge University Press:  03 May 2017

N. Iqbal*
Affiliation:
National University of Singapore, 117345, Singapore Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan (60800), Pakistan Department of Plant Protection, Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan (32200), Pakistan
T.A. Evans
Affiliation:
National University of Singapore, 117345, Singapore School of Animal Biology, University of Western Australia, Perth WA 6009, Australia
*
*Author for correspondence Phone: +92649260380 Fax: +92649260544 E-mail: [email protected]

Abstract

Fungus-growing termites (Macrotermitinae) are important pests in tropical countries. They are difficult to control with existing baiting methods, as chitin synthesis inhibitors are not effectual as active ingredients. We tested two neurotoxins, fipronil and imidacloprid, as potential bait active ingredients against Macrotermes gilvus (Hagen) in Singapore. In laboratory bioassays, M. gilvus showed no preference for doses of 0–64 ppm fipronil, or for doses of 0–250 ppm imidacloprid, indicating no repellence. We tested each insecticide in toilet paper as a bait matrix in a field experiment. After 28 days, termites had eaten 5–13% of the fipronil treated toilet paper, abandoned bait and monitoring stations, contacted no new stations, and repaired poorly their experimentally damaged mounds. Termites ate no imidacloprid treated toilet paper, abandoned bait stations although contacted new stations, and repaired fully their damaged mounds. Termites ate 60–70% of the control toilet paper, remained in bait stations, and fully repaired damaged mounds. After 56 days, all five fipronil colonies were eliminated, whereas all of the imidacloprid and control colonies were healthy. The results suggest that fipronil could be an effective active ingredient in bait systems for fungus-growing termites in tropical countries.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acda, M.N. (2004) Foraging population and territories of the tropical subterranean termite Macrotermes gilvus (Isoptera: Macrotermitinae). Sociobiology 43, 169177.Google Scholar
Alexander, S.P.H., Mathie, A. & Peters, J.A. (2011) Guide to receptors and channels (GRAC), 5th edition. British Journal of Pharmacology 164 (Suppl. 1), S1S324. DOI:10.1111/j.1476-5381.2011.01649_1.x.CrossRefGoogle ScholarPubMed
Appel, A.G. & Tanley, M.J. (2000) Laboratory and field performance of an imidacloprid gel bait against German cockroaches (Dictyoptera: Blattellidae). Journal of Economic Entomology 93, 112118.CrossRefGoogle ScholarPubMed
Bagnères, A.G., Pichon, A., Hope, J., Davis, R.W. & Clément, J.L. (2009) Contact versus feeding intoxication by fipronil in Reticulitermes termites (Isoptera: Rhinotermitidae): laboratory evaluation of toxicity, uptake, clearance, and transfer among individuals. Journal of Economic Entomology 102, 347356.Google Scholar
Bai, D., Lummis, S.C.R., Leicht, W., Breer, H. & Sattelle, D.B. (1991) Actions of imidacloprid and a related nitomethylene on cholinergenic receptors of an identified insect motor neurone. Pest Management Science 33, 197204.Google Scholar
Bortolotti, L., Montanari, R., Marcelino, J., Medrzycki, P., Maini, S. & Porrini, C. (2003) Effects of sub-lethal imidacloprid doses on the homing rate and foraging activity of honey bees. Bulletin of Insectology 56, 6367.Google Scholar
Boucias, D.G., Stokes, C., Storey, G. & Pendland, J.C. (1996) The effect of imidacloprid on the termite Reticulitermes flavipes and its interaction with the mycopathogen Beauveria bassiana . Pflanzenschutz-Nachrichten Bayer 49, 103144.Google Scholar
Brooks, M.D., Nentwig, G. & Gutsmann, V. (2009) Elimination of a Tapinoma melanocephalum (Hymenoptera: Formicidae) infestation using imidacloprid bait. International Pest Control 51, 240243.Google Scholar
Buczkowski, G. & Schal, C. (2001) Method of insecticide delivery affects horizontal transfer of fipronil in the German Cockroach (Dictyoptera: Blattellidae). Journal of Economic Entomology 94, 680685.Google Scholar
Cole, L.M., Nicholson, R.A. & Casida, J.E. (1993) Action of phenyl pyrazole insecticides at the GABA-gated chloride channel. Pesticide Biochemistry Physiology 46, 4754.Google Scholar
Collins, H.L. & Callcott, A.M.A. (1998) Fipronil: an ultra-low-dose bait toxicant for control of Red Imported Fire Ants (Hymenoptera: Formicidae). Florida Entomologist 81, 407415.Google Scholar
Cross, R.K., Maistrello, L. & Henderson, G. (2002) Behavioral effects of fipronil and imidacloprid on Coptotermes formosanus. p. 486 in Jones, S.C., Zhai, J. & Robinson, W.H. (Eds) Proceedings of the 4th International Conference on Urban Pests. Blacksburg, VA, USA, Pocahontas Press.Google Scholar
Daane, K.M., Cooper, M.L., Sime, K.R., Nelson, E.H., Battany, M.C. & Rust, M.K., Rust, (2008) Testing baits to control Argentine ants (Hymenoptera: Formicidae) in vineyards. Journal of Economic Entomology 101, 699709.Google Scholar
Dawes-Gromadzki, T.Z. & Spain, A. (2003) Seasonal patterns in the activity and species richness of surface-foraging termites (Isoptera) at paper baits in a tropical Australian savanna. Journal of Tropical Ecology 19, 449456.Google Scholar
Dhang, P. (2011) A preliminary study on elimination of colonies of the mound building termite Macrotermes gilvus (Hagen) using a chlorfluazuron termite bait in the Philippines. Insects 2, 486490.CrossRefGoogle Scholar
Eggleton, P. (2000) Global patterns of termite diversity. pp. 2554 in Abe, T., Bignell, D.E. & Higashi, M. (Eds) Termites: Evolution, Sociality, Symbioses, Ecology. Dordrecht, The Netherlands, Kluwer Academic Publications.Google Scholar
Eggleton, P., Williams, P.H. & Gaston, K.J. (1994) Explaining global termite diversity: productivity or history? Biodiversity & Conservation 3, 318330.Google Scholar
Esenther, G.R. & Gray, D.E. (1968) Subterranean termite studies in southern Ontario. Canadian Entomologist 100, 827834.Google Scholar
Evans, T.A. (2006) Foraging and building in subterranean termites: task switchers or reserve labourers? Insectes Sociaux 53, 5664.Google Scholar
Evans, T.A. (2010) Rapid elimination of field colonies of subterranean termites (Isoptera: Rhinotermitidae) using bistrifluron solid bait pellets. Journal of Economic Entomology 103, 423432.CrossRefGoogle ScholarPubMed
Evans, T.A. & Gleeson, P.V. (2006) The effect of bait design on bait consumption in termites (Isoptera: Rhinotermitidae). Bulletin of Entomological Research 96, 8590.Google Scholar
Evans, T.A. & Iqbal, N. (2015) Termite (order Blattodea, infraorder Isoptera) baiting 20 years after commercial release. Pest Management Science 71, 897906.Google Scholar
Evans, T.A., Dawes, T.Z., Ward, P.R. & Lo, N. (2011) Ants and termites increase crop yield in a dry climate. Nature Communication 2, 262. DOI:10.1038/ncomms1257.Google Scholar
Findlay, W.P.K. (1962) The Preservation of Timber. London, Adam & Charles Black Ltd.Google Scholar
Forschler, B.T. & Jenkins, T.M. (2000) Subterranean termites in the urban landscape: understanding their social structure is the key to successfully implementing population management using bait technology. Urban Ecosystem 4, 231251.Google Scholar
Gautam, B.K., Henderson, G. & Davis, R.W. (2012) Toxicity and horizontal transfer of 0.5% fipronil dust against Formosan subterranean termites. Journal of Economic Entomology 105, 17661772.CrossRefGoogle ScholarPubMed
Gay, F.J., Greaves, T., Holdaway, F.G. & Wetherly, A.H. (1955) Standard Laboratory Colonies of Termites for Evaluating the Resistance of Timber, Timber Preservatives, and Other Materials to Termite Attack. Bulletin 277. Melbourne, Australia, CSIRO.Google Scholar
GEF (2005) Demonstration Project of Alternatives to Chlordane and Mirex for Termite Control in China. Guangdong Entomological Institute. Bejing, China, The World Bank. http://web.worldbank.org/external/projects Google Scholar
Grace, J.K., Tome, C.H.M., Shelton, T.G., Ohsiro, R.J. & Yates, J.R. (1996) Baiting studies and considerations with Coptotermes formosanus (Isoptera: Rhinotermitidae) in Hawaii. Sociobiology 28, 511520.Google Scholar
Harris, W.V. (1971) Termites: Their Recognition and Control. 2nd edn. London, Longman Group Ltd.Google Scholar
Henderson, G. (2001) Practical considerations of the Formosan subterranean termite in Louisiana: a 50-year-old problem. Sociobiology 37, 281392.Google Scholar
Hickin, N.E. (1971) Termites: A World Problem. London, The Rentokil Library, Hutchinson & Co. Ltd.Google Scholar
Hu, X.P. (2011) Liquid termiticides: their role in subterranean termite management. pp. 114132 in Dhang, P. (Ed.) Urban Pest Management: An Environmental Perspective. UK, CABI.Google Scholar
Huang, Q.Y., Lei, C.L. & Xue, D. (2006) Field evaluation of a fipronil bait against subterranean termite Odontotermes formosanus (Isoptera: Termitidae). Journal of Economic Entomology 99, 455461.Google Scholar
Iqbal, N. & Saeed, S. (2013) Toxicity of six new chemical insecticides against the termite, Microtermes mycophagus D. (Isoptera: Termitidae: Macrotermitinae). Pakistan Journal of Zoology 45, 709713.Google Scholar
Iqbal, N., Evans, T.A., Saeed, S. & Khan, H.A.I. (2016 a) Evaluation of fipronil baits against Microtermes mycophagus (Blattodea: Termitidae). Canadian Entomologist 148, 343352.Google Scholar
Iqbal, N., Wijdedsas, L.S. & Evans, T.A. (2016 b) Bait station preferences in two Macrotermes species. Journal of Pest Science. DOI:10.1007/s10340-016-0778-z.Google Scholar
Jmhasly, P. & Leuthold, R.H. (1999) Intraspecific colony recognition in the termites Macrotermes subhyalinus and Macrotermes bellicosus (Isoptera, Termitidae). Insectes Sociaux 46, 164170.Google Scholar
Kaakeh, W., Reid, B.L. & Bennett, G.W. (1997) Toxicity of fipronil to German and American cockroaches. Entomologia Experimentalis et Applicata 84, 229237.Google Scholar
Keefer, T.C. (2010) Laboratory and field evaluation of imidacloprid against Reticulitermes flavipes (kollar) and Coptotermes formosanus shiraki (Isoptera: Rhinotermitidae) subterranean termites in Texas. MSc Thesis, Texas A & M University, USA.Google Scholar
Keefer, T.C., Puckett, R.T. & Gold, R.E. (2011) Effect of imidacloprid granules on subterranean termite populations (Isoptera: Rhinotermitidae). Sociobiology 57, 3550.Google Scholar
La Fage, J.P., Nutting, W.L. & Haverty, M.I. (1973) Desert subterranean termites: a method for studying foraging behaviour. Environmental Entomology 2, 954956.Google Scholar
Lee, C.C., Neoh, K.B. & Lee, C.Y. (2014) Colony size affects the efficacy of bait containing chlorfluazuron against the fungus-growing termite Macrotermes gilvus (Blattodea: Termitidae). Journal of Economic Entomology 107, 21542162.Google Scholar
Lee, C.Y. (2014). Termites of Singapore: A Scientific Guide for Pest Management Professional. Singapore, Singapore Pest Management Association.Google Scholar
Lee, C.Y., Vongkaluang, C. & Lenz, M. (2007) Challenges to subterranean termite management of multi-genera faunas in Southeast Asia and Australia. Sociobiology 50, 213221.Google Scholar
Mao, L., Henderson, G. & Scherer, C.W. (2011) Toxicity of seven termiticides on the Formosan and eastern subterranean termites. Journal of Economic Entomology 104, 10021008.Google Scholar
Mullins, J.W. (1993) Imidacloprid: a new nitroguanidine insecticide. pp. 184198 in Duke, S.O., Menn, J.J. & Plimmer, J.R. (Eds) Pest Control With Enhanced Environmental Safety. ACS Symposium Series Vol. No. 524, Washington, DC, American Chemical Society.Google Scholar
Neoh, K.B. & Lee, C.Y. (2009) Developmental stages and castes of two sympatric subterranean termites Macrotermes gilvus and Macrotermes carbonarius (Blattodea: Termitidae). Annals of Entomological Society of America 102, 10911098.Google Scholar
Neoh, K.B., Jalaludin, N.A. & Lee, C.Y. (2011) Elimination of field-colonies of a mound-building termite Globitermes sulphureus (Isoptera: Termitidae) by bistrifluron bait. Journal of Economic Entomology 104, 607613.Google Scholar
Parman, V. & Vargo, E.L. (2010) Colony-level effects of imidacloprid in subterranean termites (Isoptera: Rhinotermitidae). Journal of Economic Entomology 103, 791798.Google Scholar
Paton, R. & Miller, L.R. (1980) Control of Mastotermes darwiniensis Froggatt (Isoptera: Mastrotermitidae) with mirex baits. Australian Forestry Research 10, 249258.Google Scholar
Peters, B.C. & Fitzgerald, C.J. (2003) Field evaluation of the bait toxicant chlorfluazuron in eliminating Coptotermes acinaciformis (Froggatt) (Isoptera: Rhinotermitidae). Journal of Economic Entomology 96, 18281831.Google Scholar
Quarcoo, F.Y., Appel, A.G., & Hu, X. P. (2010) Effects of indoxacarb concentration and exposure time on onset of abnormal behaviors, morbundity, and death in Eastern Subterranean Termite (Isoptera: Rhinotermitidae). Journal of Economic Entomology 103, 762769.Google Scholar
Quarcoo, F.Y., Hu, X.P. & Appela, A.G. (2012) Effects of non-repellent termiticides on the tunneling and walking ability of the Eastern Subterranean Termite (Isoptera: Rhinotermitidae). Pest Management Science 68, 13521359.Google Scholar
Roisin, Y. (2000) Diversity and evolution of caste patterns pp. 95119 in Abe, T., Bignell, D.E. & Higashi, M. (Eds) Termites: Evolution, Sociality, Symbioses, Ecology. Dordrecht, The Netherlands, Kluwer Academic Publications.Google Scholar
Rouland-Lefèvre, C. (2011) Termites as pests of agriculture. pp. 499517 in Bignell, D.E., Roisin, Y. & Lo, N. (Eds) Biology of Termites: A Modern Synthesis. Netherlands, Springer Science+Business Media B.V.Google Scholar
Saran, R.K. & Rust, M.K. (2007) Toxicity, uptake, and transfer efficiency of fipronil in western subterranean termite (Isoptera: Rhinotermitidae). Journal of Economic Entomology 100, 495508.Google Scholar
Scholz, G.H., Militz, P., Gascon-Garrido, M.S., Ibiza-Palacios, , & Oliver-Villanueva, J.V. (2010) Improved termite resistance of wood by wax impregnation. International Biodeterioration & Biodegradation 64, 688693.Google Scholar
Shelton, T.G. & Grace, J.K. (2003) Effects of exposure duration on transfer of nonrepellent termiticides among workers of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Journal of Economic Entomology 96, 456460.Google Scholar
Simon-Delso, N., Amaral-Rogers, V., Belzunces, L.P., Bonmatin, J.M., Chagnon, M., Downs, C., Furlan, L., Gibbons, D.W., Giorio, C., Girolami, V., Goulson, D., Kreutzweiser, D.P., Krupke, C.H., Liess, M., Long, E., McField, M., Mineau, P., Mitchell, E.A.D., Morrissey, C.A., Noome, D.A., Pisa, L., Settele, J., Stark, J.D., Tapparo, A., Van Dyck, H., Van Praagh, J., Van der Sluijs, J.P., Whitehorn, P.R. & Wiemers, M. (2015) Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environmental Science & Pollution Research 22, 534.Google Scholar
Sokal, R.R. & Rohlf, F.J. (1981) Biometry. 2nd edn. New York, WH Freeman and Co.Google Scholar
Spomer, N.A., Kamble, S.T., Warriner, R.A. & Davis, R.W. (2008) Influence of temperature on rate of uptake and subsequent horizontal transfer of fipronil by eastern subterranean termites (Isoptera: Rhinotermitidae). Journal of Economic Entomology 101, 902908.Google Scholar
Stringer, C.E. Jr., Lofgren, C.S. & Bartlett, F.J. (1964) Imported fire ant toxic bait studies: evaluation of toxicants. Journal of Economic Entomology 57, 941945.Google Scholar
Su, N.Y. (1994) Field evaluation of hexaflumuron bait for population suppression of subterranean termites (Isoptera: Rhinotermitidae). Journal of Economic Entomology 87, 389397.Google Scholar
Su, N.Y. & Scheffrahn, R.H. (2000) Termites as pests of buildings. pp. 437453 in Abe, T., Bignell, D.E. & Higashi, M. (Eds) Termites: Evolution, Sociality, Symbioses, Ecology. Dordrecht, The Netherlands, Kluwer Academic Publications.Google Scholar
SYSTAT v. 9.0 (1998) SPSS. Chicago, IL, SPSS, Inc.Google Scholar
Thorne, B.L. & Breisch, N.L. (2001) Effects of sublethal exposure to imidacloprid on subsequent behaviour of subterranean termite Reticulitermes virginicus (Isoptera: Rhinotermitidae). Journal of Economic Entomology 94, 492498.CrossRefGoogle ScholarPubMed
Thorne, B.L. & Forschler, B.L. (2000) Criteria for assessing efficacy of stand-alone termite bait treatments at structure. Sociobiology 36, 245255.Google Scholar
Tomalski, M. & Vargo, E.L. (2004) Chain reaction: studies shed light on mechanisms of transfer of a nonrepellent termiticide. Pest Control May, 5153.Google Scholar
Tomalski, M. & Vargo, E.L. (2005) Acquisition, transfer and metabolism of [14C] Imidacloprid among workers of the subterranean termite, Reticulitermes flavipes (Isoptera: Rhinotermitidae). pp. 243249 in Proceedings of the 5th International Conference on Urban Pests.Google Scholar
Verma, M., Sharma, S. & Prasad, R. (2009) Biological alternatives for termite control: a review. International Biodeterioration & Biodegradation 63, 959972.Google Scholar
Ware, G.W. 1999. An Introduction to Pesticides. 3rd edn. Fresno, CA, USA, Thomson Publications.Google Scholar
Webb, G.A. & McClintock, C. (2015) Elimination of the mound-building termite, Nasutitermes exitiosus (Isoptera: Termitidae) in South-Eastern Australia using bistrifluron bait. Journal of Economic Entomology 108, 27022710.Google Scholar
White, G.L. (1998) Control of the leaf-cutting ants Acromyrmex octospinosus (Reich.) and Atta cephalotes (L.) (Formicidae, Attini) with a bait of citrus meal and fipronil. International Journal of Pest Management 44, 115117.Google Scholar
Wood, T.G. (1991) Termites in Ethiopia: the environmental impact of their damage and resultant control measures. Ambio 20, 136138.Google Scholar
Yang, E.C., Chuang, Y.C., Chen, Y.L. & Chang, L.H. (2008) Abnormal foraging behaviour induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). Journal of Economic Entomology 101, 17431748.CrossRefGoogle ScholarPubMed