Hostname: page-component-5f745c7db-sbzbt Total loading time: 0 Render date: 2025-01-06T10:56:08.682Z Has data issue: true hasContentIssue false

Estimates of gene flow from rare alleles in natural populations of medfly Ceratitis capitata (Diptera: Tephritidae)

Published online by Cambridge University Press:  09 March 2007

A. Kourti*
Affiliation:
Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
*
*Fax: +30 210 5294321 E-mail: [email protected]

Abstract

Gene flow based on the spatial distribution of rare alleles at 25 gene loci was estimated in 15 populations of Ceratitis capitata (Wiedemann) from different parts of the world. Estimates of Nm, the number of migrants exchanged per generation among populations in different regions of the world, appeared to be quite similar, ranging from 3.36 in tropical Africa to 2.94 in the New World and 2.72 in Mediterranean basin populations. This suggests that gene flow among neighbouring populations of medfly is quite extensive. The genetic differentiation in American, Mediterranean and African populations was related to major climatic differences between North and South. These differences arise mainly from five loci that showed gene frequency patterns suggestive of latitudinal clines in allele frequencies. The clinal variation was such that tropical-subtropical populations were more heterozygous than temperate populations. It was concluded that gene flow, counteracting the forces of natural selection and genetic drift, determines the extent to which geographical populations of C. capitata are differentiated.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ayala, F.J., Powell, J.R., Tracey, M.L., Mourao, C.A. & Perez-Salas, S. (1972) Enzyme variation in the Drosophila willistoni group. IV. Genic variation in natural populations of Drosophila willistoni. Genetics 70, 113139.CrossRefGoogle ScholarPubMed
Baker, P.S. & Chain, A.S. (1991) Appetite dispersal of sterile fruit flies: aspects of the methodology and analysis of trapping studies. Journal of Applied Entomology 112, 263273.CrossRefGoogle Scholar
Balakirev, S. & Ayala, F.J. (2003) Est-6 nucleotide variation of the Est-6 gene region in natural populations of Drosophila melanogaster. Genetics 165, 19011914.CrossRefGoogle ScholarPubMed
Barker, J.S.F., East, P.D. & Weir, B.S. (1986) Temporal and microgeographic variation in allozyme frequencies in a natural population of Drosophila buzzatii. Genetics 112, 577611.CrossRefGoogle Scholar
Baruffi, L., Damiani, G., Guglielmino, C.R., Bandi, C., Malacrida, A.R. & Gasperi, G. (1995) Polymorphism within and between populations of Ceratitis capitata: comparison between RAPD and multilocus enzyme electrophoresis data. Heredity 74, 425437.CrossRefGoogle ScholarPubMed
Bonizzoni, M., Malacrida, A.R., Guglieimino, C.R., Gomulski, L.M., Gasperi, G. & Zheng, L. (2000) Microsatellite polymorphism in the Mediterranean fruit fly, Ceratitis capitata. Insect Molecular Biology 9, 251261.CrossRefGoogle ScholarPubMed
Carey, J.R. (1991) Establishment of the Mediterranean fruit fly in California. Science 253, 13691373.CrossRefGoogle ScholarPubMed
Daly, J.C. (1989) The use of electrophoretic data in a study of gene flow in the pest species Heliothis armigera (Hübner) amd H. puntigera Wallengren (Lepidoptera: Noctuidae). pp. 115141 in Loxdale, H.D. (Eds). Electrophoretic studies on agricultural pests. Oxford, Clarendon Press.Google Scholar
David, J.R. (1982) Latitudinal variability of Drosophila melanogaster allozyme frequencies divergence between European and Afrotropical populations. Biochemical Genetics 20, 747761.CrossRefGoogle ScholarPubMed
Endler, J.A. (1977) Geographic variation, speciation, and clines Princeton, New Jersey, Princeton University Press.Google Scholar
Feder, J.L., Berlocher, S.H. & Opp, S.B. (1998) Sympatric host-race formation and speciation in Rhagoletis (Diptera: Tephritidae): a tale of two species for Charles, D. Genetic structure and local adaptation in natural insect populations pp. 408449 in Mopper, S. & Strauss, S.Y. (Eds). New York, Chapman and Hall.?.Google Scholar
Fletcher, B.S. (1989) Movements of tephritid fruit flies. pp. 209219 in Robinson, A.S. & Hooper, G.H. (Eds). Fruit flies: their biology, natural enemies and control. Amsterdam, Elsevier.Google Scholar
Gasperi, G., Guglielmino, C.R., Malacrida, A.R. & Milani, R. (1991) Genetic variability and gene flow in geographical populations of (medfly) Ceratitis capitata (Wied). Heredity 64, 347356.CrossRefGoogle Scholar
Gomulski, L., Morandi, P.A., Brogna, S., Bourtzis, K., Savakis, C. & Gasperi, G. (1996) Intron size variation traces the world-wide colonization history of the medfly, Ceratitis capitata. p. 229 in Proceedings of the XX International Congress of EntomologyFlorence, ItalyAugust 25–31.Google Scholar
Harris, E.J. & Olalquiaga, G. (1991) Occurrence and distribution patterns of Mediterranean fruit fly (Diptera: Tephritidae) in desert areas in Chile and Peru. Environmental Entomology 20, 174178.CrossRefGoogle Scholar
He, M. & Haymer, D.S. (1999) Genetic relationships of populations and the origins of new infestations of the Meditarranean fruit fly. Molecular Ecology 8, 12471257.CrossRefGoogle Scholar
Hyytia, P., Capy, P., David, J.R. & Singh, R.S. (1985) Enzymatic and quantitative variation in European and African populations of Drosophila simulans. Heredity 54, 209217.CrossRefGoogle ScholarPubMed
Johnson, F.M. & Schaffer, H.E. (1973) Isozyme variability in species of the genus Drosophila. VIII. Genotype-environment relationships in populations of D. melanogaster from the eastern U.S. Biochemical Genetics 10, 149163.CrossRefGoogle Scholar
Kourti, A. (1997) Comparison of mtDNA variants among Mediterranean and New World introductions of the Mediterranean fruit fly Ceratitis capitata (Wied). Biochemical Genetics 35, 363370.CrossRefGoogle ScholarPubMed
Kourti, A. (2002) Estimates of heterozygosity and patterns of geographic differentiation in natural populations of the medfly (Ceratitis capitata). Hereditas 137, 173179.CrossRefGoogle Scholar
Kourti, A. & Hatzopoulos, P. (1995) Latitudinal clines of allelic frequencies in Mediterranean populations of Ceratitis capitata (Wiedemann). Genetic Selection and Evolution 27, 201210.CrossRefGoogle Scholar
Kourti, A., Loukas, M. & Economopoulos, A.P. (1990) Population genetics of the Mediterranean fruit fly, Ceratitis capitata (Wied.) pp 732. IAEA, Genetic sexing of the Mediterranean fruit fly. Panel proceedings Series, Vienna Austria.Google Scholar
Kourti, A., Loukas, M. & Sourdis, J. (1992) Dispersion pattern of the medfly from its geographic centre of origin and genetic relationships of the medfly with two close relatives. Entomologia Experimentalis et Applicata 63, 6369.CrossRefGoogle Scholar
Kusakabe, S. & Mukai, T. (1984) The genetic structure of natural populations of Drosophila melanogaster. XVIII. Clinal and uniform genetic variation over populations. Genetics 108, 617632.2.CrossRefGoogle ScholarPubMed
Lenormand, T., Guillemaud, T., Bourguet, D. & Raymond, M. (1998) Evaluating gene flow using selected markers: a case study. Genetics 149, 13831392.CrossRefGoogle ScholarPubMed
Loxdale, H.D. & Lushai, G. (2001) Use of genetic diversity in movements studies of flying insects. Insect movement: mechanisms and consequences pp. 361386 in Woiwod, I.P., Reynolds, D.R. & Thomas, C.D. (Eds). Royal Entomological Society 20th International Symposium, Imperial College, London, September 13–14, 1999. Wallingford, Oxon CAB International.Google Scholar
Malacrida, A.R., Marinoni, F., Torti, C., Gomulski, L.M., Sebastiani, F., Bonvicini, C., Gasperi, G. & Guglielmino, C.R. (1998) Genetic aspects of the worldwide colonization process of Ceratitis capitata. Heredity 89, 501507.CrossRefGoogle ScholarPubMed
Mallet, J. (2001) Gene flow. pp. 337360 in Woiwod, I.P., Reynolds, D.R. & Thomas, C.D. (Eds). Insect movement: mechanisms and consequences. Wallingford, Oxon CAB International.Google Scholar
Mallet, J., Barton, N.H., Lamas, G., Santisteban, J., Muedas, M. & Eeley, H. (1990) Estimates of selection and gene flow from measures of cline width and linkage disequilibrium in Heliconius hybrid zones. Genetics 124, 921936.CrossRefGoogle ScholarPubMed
May, R.M., Endler, J.A., McMultie, R.E. (1975) Gene frequency clines in the presence of selection opposed by gene flow. American Naturalist 109, 659676.CrossRefGoogle ScholarPubMed
McPheron, B.A., Gasparich, G.E., Han, H.Y., Steck, G.J. & Sheppard, W.S. (1994) Mitochondrial DNA restriction map for the Mediterranean fruit fly, Ceratitis capitata. Biochemical Genetics 32, 2533.CrossRefGoogle ScholarPubMed
Nagylaki, T. (1975) Conditions for the existence of clines. Genetics 80, 595615.CrossRefGoogle ScholarPubMed
Nagylaki, T. (1978) Random genetic drift in a cline. Proceedings of the National Academy of Sciences, USA 75, 423426.CrossRefGoogle Scholar
Nei, M., Maruyama, T. & Chacraborty, R. (1975) The bottleneck effect and genetic variability in populations. Evolution 29, 110.CrossRefGoogle ScholarPubMed
Nei, M. (1977) F -statistics and analysis of gene diversity in subdivided populations. Annals of Human Genetics 41, 225233.CrossRefGoogle ScholarPubMed
Neigel, J.E. (1997) A comparison of alternative strategies for estimating gene flow from genetic markers. Annual Review of Ecology and Systematics 28, 105128.CrossRefGoogle Scholar
Nevo, E., Rashkovetsky, E., Pavlicek, T. & Korol, A. (1998) A complex adaptive syndrome in Drosophila caused by microclimatic contrasts. Heredity 80, 916.CrossRefGoogle ScholarPubMed
Oakeshott, J.G., Chambers, G.K., Gibson, J.B. & Willcoks, D.A. (1981) Latitudinal relationships of esterase-6 and phosphoglucomutase gene frequencies in Drosophila melanogaster. Heredity 47, 385396.CrossRefGoogle ScholarPubMed
Oakeshott, J.G., Gibson, J.B., Anderson, P.R., Knibb, W.R., Anderson, D.G. & Chambers, G.K. (1982) Alcohol dehydrogenase and glycerol-3-phosphate dehydrogenase clines in Drosophila melanogaster on different continents. Evolution 36, 8696.CrossRefGoogle ScholarPubMed
Plant, R.E. & Cunningham, R.T. (1991) Analysis of the dispersal of sterile Mediterranean fruit flies (Diptera: Tephritidae) released from a point source. Environmental Entomology 20, 14931503.CrossRefGoogle Scholar
Raybould, A.F., Clarke, R.T., Bond, J.M., Welters, R.E. & Gliddon, C.J. (2001) Inferring patterns of dispersal from allele frequency data. pp. 89110 in Bullock, J.M., Kenward, R.E. & Hails, R.S. (Eds). Dispersal ecology. British Ecological Society.Google Scholar
Schaffer, H.E. & Johnson, F.M. (1974) Isozyme allelic frequencies related to selection and gene-flow hypothesis. Genetics 77, 163168.CrossRefGoogle Scholar
Sheppard, W.S., Steck, G.J., McPheron, B.A. (1992) Geographic populations of the medfly may be differentiated by mitochondrial DNA variation. Experientia 48, 10101015.CrossRefGoogle Scholar
Singh, R.S. & Rhomberg, L.R. (1987) A comprehensive study of genetic variation in natural populations of Drosophila melanogaster. II. Estimates of heterozygosity and patterns of geographic differentiation. Genetics 117, 255271.CrossRefGoogle ScholarPubMed
Slatkin, M. (1973) Gene flow and selection in a cline. Genetics 75, 733756.CrossRefGoogle Scholar
Slatkin, M. (1981) Estimating level of gene flow in natural populations. Genetics 99, 323335.CrossRefGoogle ScholarPubMed
Slatkin, M. (1985a) Gene flow in natural populations. Annual Review of Ecology and Systematics 16, 393430.CrossRefGoogle Scholar
Slatkin, M. (1985b) Rare alleles as indicators of gene flow. Evolution 39, 5365.CrossRefGoogle ScholarPubMed
Slatkin, M. (1987) Gene flow and the geographic structure of natural populations. Science 236, 787792.CrossRefGoogle ScholarPubMed
Steiner, W. (1979) Genetic variation in Hawaiian Drosophila. VI. Seasonal-dependent gene changes in Drosophila mimica. Evolution, 33, 543562.Google Scholar
Swofford, D.L. & Selander, R.B. (1981) BIOSYS-1. A computer program for the analysis of allelic variations in genetics. University of Illinois, Urbana.Google Scholar
Voelker, R.A., Mukai, T. & Johnson, F.M. (1977) Genetic variation in populations of Drosophila melanogaster from the western United States. Genetica 47, 143148.CrossRefGoogle Scholar
Voelker, R.A., Cockerham, C.C., Johnson, F.M., Shaffer, H.E., Mukai, T. & Mettler, L.E. (1978) Inversions fail to account for allozyme clines. Genetics 88, 515527.CrossRefGoogle ScholarPubMed
Wiernasz, D.C. (1989) Ecological and genetic correlates of range expansion in Coenonympha tullia. Biological Journal of the Linnean Society 38, 197214.CrossRefGoogle Scholar
Workman, P.L. & Niswander, J.D. (1970) Population studies on south-western Indian tribes. II. Local differentiation in the Papago. American Journal of Human Genetics 22 2449.Google Scholar
Wright, S. (1931) Evolution in Mendelian populations. Genetics 16, 97159.CrossRefGoogle ScholarPubMed
Wright, S. (1943) Isolation by distance. Genetics 28, 114138.CrossRefGoogle ScholarPubMed
Wright, S. (1951) The genetical structure of populations. Annals of Eugenics 15, 323354.CrossRefGoogle ScholarPubMed