Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T18:58:56.841Z Has data issue: false hasContentIssue false

Enzyme variation in the Anopheles gambiae Giles group of species (Diptera: Culicidae)

Published online by Cambridge University Press:  10 July 2009

S. J. Miles
Affiliation:
Ross Institute, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.

Abstract

The genotypes of chromosomally-identified individuals from natural populations of the known species of the group of Anopheles gambiae Giles were scored for the enzyme protein structural loci coding for adenylate kinase (Adk), α-naphthyl acetate esterase (Est-1, Est-2, Est-3), glutamic-oxaloacetic transaminase (Got), α-glycerophosphate dehydrogenase (αGpd), hexokinase (Hk), isocitric dehydrogenase (Idh), lactic dehydrogenase (Ldh), ‘leucine’ aminopeptidase (Lap-2), malic enzyme (Me), octanol dehydrogenase (Odh), phosphoglucomutase (Pgm-1, Pgm-2), 6-phosphogluconic dehydrogenase (6-Pgd), phosphohexose isomerase (Phi) and superoxide dismutase (Sod), following starch gel electrophoresis. In the material examined, Est-1, Est-2, Est-3, Got, ldh, Lap-2, Odh, Pgm-1, Pgm-2 and Sod were segregating for two or more alleles; unique alleles at the Est-1, Got and Sod loci produced species-specific phenotypes in A. melas (Theo.), species C and species D, respectively. The further sampling of A. merus Dön, populations supported the presence of a unique SOD phenotype by which this species can also be identified. Of the other enzyme systems examined, no activity following electrophoresis was detected for aldolase and fructose-1,6-diphosphatase, and the resolution of acid and alkaline phosphatase, glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphate dehydrogenase, malic dehydrogenase and xanthine dehydrogenase was too poor under the particular electrophoretic conditions for genetic analyses of the enzyme phenotypes.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ayala, F. J. & Powell, J. R. (1972). Allozymes as diagnostic characters of sibling species of Drosophila.—Proc. natn. Acad. Sci. U.S.A. 69, 10941096.CrossRefGoogle ScholarPubMed
Ayala, F. J., Powell, J. R., Tracey, M. L., Mourão, C. A. & Pérez-Salas, S. (1972). Enzyme variability in the Drosophila willistoni group. IV. Genic variation in natural populations of Drosophila willistoni.—Genetics 70, 113139.CrossRefGoogle ScholarPubMed
Baker, R. H. & Sakai, R. K. (1974). Genetic studies on Culex tritaeniorhynchus, pp. 133182in Pal, R. & Whitten, M. J. (Eds.). The use of genetics in insect control.—241 pp. Amsterdam, Elsevier.Google Scholar
Bianchi, U. & Rinaldi, A. (1974). Tissue-specific glucose-6-phosphate dehydrogenases in anopheline mosquitoes.—J. Histochem. Cytochem. 22, 260265.CrossRefGoogle ScholarPubMed
Bullini, L. & Coluzzi, M. (1973). Electrophoretic studies on gene-enzyme systems in mosquitoes (Diptera, Culicidae).—Parassitologia 15, 221248.Google ScholarPubMed
Bullini, L., Coluzzi, M. & Bianchi Bullini, A. P. (1976). Biochemical variants in the study of multiple insemination in Culex pipiens L. (Diptera, Culicidae).—Bull. ent. Res. 65, 683685.CrossRefGoogle Scholar
Colluzzi, M. & Bullini, L. (1971). Enzyme variants as markers in the study of pre-copulatory isolating mechanisms.—Nature, Lond. 231, 455456.CrossRefGoogle Scholar
Coluzzi, M., Sabatini, A. & Petrarca, V. (in press). Chromosomal differences and polymorphisms in the gambiae complex, genus A nopheles.—Parassitologia.Google Scholar
Craddock, E. M. & Johnson, W. E. (1976). First gene mapping in Hawaian Drosophila.— Am. Nat. 110, 861865.CrossRefGoogle Scholar
Curtis, C. F. (1976). Allelism test on two eye colour mutants in Anopheles gambiae species A.—Trans. R. Soc. trop. Med. Hyg. 70, 281.Google Scholar
Davidson, G. (1956). Insecticide resistance in Anopheles gambiae Giles: a case of simple Mendelian inheritance.—Nature, Lond. 178, 861863.Google Scholar
Davidson, G. (1958). Studies on insecticide resistance in anopheline mosquitos.—Bull. Wld. Hlth Org. 18, 579621Google ScholarPubMed
Haridi, A. M. (1974). Linkage studies on DDT and dieldrin resistance in species A and species B of the Anopheles gambiae complex.—Bull. Wld. Hlth Org. 50, 441448.Google ScholarPubMed
Hunt, R. H. (1972). A cytological technique for the study of the Anopheles gambiae complex. —Parassitologia 15, 137139.Google Scholar
Mahon, R. J., Green, C. A. & Hunt, R. H. (1976). Diagnostic allozymes for routine identification of adults of the Anopheles gambiae complex (Diptera, Culicidae).— Bull. ent. Res. 66, 2531CrossRefGoogle Scholar
Marklund, S. (1973). A novel superoxide dismutase of high molecular weight from bovine liver.—Acta Chem. Scand. 27, 14581460.CrossRefGoogle ScholarPubMed
Mason, G. F. (1967). Genetic studies on mutations in species A and B of the Anopheles gambiae complex.—Genet. Res., Camb. 10, 205217.CrossRefGoogle Scholar
Miles, S. J. (1974). Biochemical polymorphisms and evolutionary relationships in the Culex ‘pipiens’ complex (Diptera: Culicidae).—Ph.D. thesis, Univ. West. Aust.Google Scholar
Miles, S. J. (1976). Taxonomic significance of assortative mating in a mixed field population of Culex pipiens australicus, C. p. quinquefasciatus and C. globocoxitus.—Syst. Ent, 1, 263270.Google Scholar
Nakagawa, S. & Tsuji, H. (1964). Electrophoretic separation of leucine aminopeptidase and leucyl-β-naphthylamide-splitting enzyme.—Clinica chim. Acta 10, 572573.Google ScholarPubMed
Nichols, E. A. & Ruddle, F. H. (1973). A review of enzyme polymorphism. Linkage and electrophoretic conditions for mouse and somatic cell hybrids in starch gels.—J. Histochem. Cytochem. 21, 10661081.CrossRefGoogle ScholarPubMed
Shaw, C. R. & Psasad, R. (1970). Starch gel electrophoresis of enzymes—a compilation of recipes.—Biochem. Genet. 4, 297320.CrossRefGoogle ScholarPubMed
Sprio-Kern, A. (1974) Untersuchungen über die Proteasen bei Culex pipiens.—J. comp. Physiol. 90, 5370CrossRefGoogle Scholar