Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T08:16:29.041Z Has data issue: false hasContentIssue false

Effects of temperature on predation by the stinkbugs Picromerus bidens and Podisus maculiventris (Heteroptera: Pentatomidae) on noctuid caterpillars

Published online by Cambridge University Press:  09 March 2007

K. Mahdian
Affiliation:
Department of Crop Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
I. Vantornhout
Affiliation:
Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
L. Tirry
Affiliation:
Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
P. De Clercq*
Affiliation:
Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
*
*Fax: +32 9264 6239 E-mail: [email protected]

Abstract

Environmental risks associated with the use of non-indigenous organisms for augmentative biological control have received growing attention. In Europe, the native pentatomid predator Picromerus bidens (Linnaeus) has been considered a potential alternative to the North American pentatomid Podisus maculiventris (Say) for the control of lepidopteran, coleopteran and hymenopteran defoliator pests. In the current study, prey consumption and developmental duration of the predatory stages of P. bidens and P. maculiventris were investigated at three temperatures (18, 23 and 27°C) in the laboratory using caterpillars of Spodoptera littoralis as prey. Development time from second to fifth instar was longer for P. bidens than for P. maculiventris, taking on average 17–44 and 14–32 days, respectively, at the different temperatures. Total nymphal consumption of fourth instar S. littoralis caterpillars indicated a greater voracity of P. bidens as compared with P. maculiventris at both the low and high temperatures tested (18 and 27°C). At 23°C, however, the predation rate of P. maculiventris nymphs exceeded that of P. bidens nymphs. Effect of temperature on the functional response of P. bidens to densities of fourth instar Spodoptera exigua was assessed on potted green bean plants. Female adults of P. bidens exhibited a type II functional response at 18 and 23°C but a type III response at 27°C. Searching efficiency was not affected by temperature but handling time decreased from 4.2 to 1.4 h as temperature increased from 18 to 23°C. However, the predator spent twice as much time handling prey at 27°C (2.9 h) than at 23°C. This study indicates high predation rates of P. bidens at a wide range of temperatures and suggests that the species may be a valuable asset for the biological control of defoliating caterpillars, provided that obstacles to its mass production can be overcome.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Clausen, C.P. (1940) Entomophagous insects. New York, McGraw-Hill.Google Scholar
Couturier, A. (1938) Contribution à l'étude biologique de Podisus maculiventris Say, prédateur américain du doryphore. Annales des Epiphyties et de Phytogénétique 4, 95165.Google Scholar
De Clercq, P. (2000) Predaceous stinkbugs (Pentatomidae: Asopinae). pp. 737789 in Schaefer, C.W. & Panizzi, A.R. (Eds) Heteroptera of economic importance. Boca Raton, Florida, CRC Press.CrossRefGoogle Scholar
De Clercq, P. (2002) Dark clouds and their silver linings: exotic generalist predators in augmentative biological control. Neotropical Entomology 31, 169176.CrossRefGoogle Scholar
De Clercq, P. (2004) Culture of natural enemies on factitious foods and artificial diets. pp. 650652 in Capinera, J.L. (Ed.)Encyclopedia of entomology. Vol. I. Dordrecht, Kluwer Academic Publishers.Google Scholar
De Clercq, P. & Degheele, D. (1994) Laboratory measurement of predation by Podisus maculiventris and P. sagitta (Hemiptera: Pentatomidae)on beet armyworm (Lepidoptera: Noctuidae). Journal of Economic Entomology 87, 7687.CrossRefGoogle Scholar
De Clercq, P., Merlevede, F., Mestdagh, I., Vandendurpel, K., Mohaghegh, J. & Degheele, D. (1998) Predation on tomato looper Chrysodeixis chalcites (Esper) (Lep., Noctuidae) by Podisus maculiventris (Say) and Podisus nigrispinus (Dallas) (Het., Pentatomidae). Journal of Applied Entomology 123, 9398.CrossRefGoogle Scholar
De Clercq, P., Mohaghegh, J. & Tirry, L. (2000) Effect of host plant on the functional response of the predator Podisus nigrispinus (Heteroptera: Pentatomidae). Biological Control 18, 6570.CrossRefGoogle Scholar
East, D.A., Edelson, J.V. & Cartwright, B. (1989) Relative cabbage consumption by the cabbage looper (Lepidoptera: Noctuidae), beet armyworm (Lepidoptera: Noctuidae), and diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology 82, 13671369.CrossRefGoogle Scholar
Engel, H. (1939) Populationsdynamik des Kieferspanners in verschiedenen Biotopen. Verhandlungen des VII Internationaler Kongress für Entomologie 3, 19411949.Google Scholar
Enkegaard, A. (1994) Temperature dependent functional response of Encarsia formosa parasitizing the poinsettia-strain of the cotton whitefly, Bemisia tabaci, on poinsettia. Entomologia Experimentalis et Applicata 73, 1929.CrossRefGoogle Scholar
Forsslund, K.H. (1946) The injuriousness of Neodiprion sertifer Geoffr. Meddelanden Skogsförsöksanstalt 34, 365390.Google Scholar
Gäbler, H. (1937) Picromerus bidens L. als Feind der Lophyrus larven. Tharandter Forstliches Jahrbuch 88, 5158.Google Scholar
Gäbler, H. (1938) Die Bedeutung einiger Wanzenarten als Feind der Nonne. Zeitschrift für Angewandte Entomologie 104, 277290.Google Scholar
Gilioli, G., Baumgärtner, J. & Vacante, V. (2005) Temperature influences on functional response of Coenosia attenuate (Diptera: Muscidae) individuals. Journal of Economic Entomology 98, 15241530.CrossRefGoogle Scholar
Holling, C.S. (1959) Some characteristics of simple types of predation and parasitism. Canadian Entomologist 91, 385398.CrossRefGoogle Scholar
Javahery, M. (1986) Biology and ecology of Picromerus bidens (Hemiptera: Pentatomidae) in southeastern Canada. Entomological News 97, 8798.Google Scholar
Juliano, S.A. (2001) Non-linear curve fitting: predation and functional response curves. pp. 178196 in Scheiner, M.S. & Gurevitch, J. (Eds) Design and analysis of ecological experiments. New York, Oxford University Press.CrossRefGoogle Scholar
Kalyebi, A., Overholt, W.A., Schulthess, F., Mueke, J.M., Hassan, S.A. & Sithanantham, S. (2005) Functional response of six indigenous trichogrammatid egg parasitoids (Hymenoptera: Trichogrammatidae) in Kenya: influence of temperature and relative humidity. Biological Control 32, 164171.CrossRefGoogle Scholar
Kumar, P. & Ballal, C.R. (1992) The effect of parasitism by Hyposoter didymator (Hymenoptera: Ichneumonidae) on food consumption and utilization by Spodoptera littoralis (Lepidoptera: Noctuidae). Entomophaga 37, 197203.CrossRefGoogle Scholar
Larivière, M.C. & Larochelle, A. (1989) Picromerus bidens Heteroptera: Pentatomidae) in North America, with a world review of distribution and bionomics. Entomological News 100, 133145.Google Scholar
Mahdian, K., Kerckhove, J., Tirry, L. & De Clercq, P. (2006) Effects of diet on development and reproduction of the predatory pentatomids Picromerus bidens and Podisus maculiventris. BioControl (in press).CrossRefGoogle Scholar
Mallach, N. (1974) Zur Kenntnis der kleinen Kiefern-Buschhornblattwespe, Diprion (Microdipiron) pallipes (Fall.) (Hym.: Diprionidae). Teil 3. Populationsökologie. Zeitschrift für Angewandte Entomologie 75, 337380.CrossRefGoogle Scholar
McPherson, J.E. (1980) A list of the prey species of Podisus maculiventris (Hemiptera: Pentatomidae). Great Lakes Entomologist 13, 1724.Google Scholar
McPherson, J.E. (1982) The Pentatomoidea (Hemiptera) of northeastern North America with emphasis on the fauna of Illinois. 240 pp. Carbondale, Illinois, Southern Illinois University Press.Google Scholar
Mohaghegh, J., De Clercq, P. & Tirry, L. (2001) Functional response of the predators Podisus maculiventris (Say) and Podisus nigrispinus (Dallas) (Het., Pentatomidae) to the beet armyworm, Spodoptera exigua (Hübner) (Lep., Noctuidae): effect of temperature. Journal of Applied Entomology 125, 131134.CrossRefGoogle Scholar
Morris, R.F. (1963) The effect of predator age and prey defence on the functional response of Podisus maculiventris Say to the density of Hyphantria cunea Drury. Canadian Entomologist 95, 10091020.CrossRefGoogle Scholar
Mukerji, M.K. & Leroux, E.J. (1969) The effect of predator age on the functional response of Podisus maculiventris to the prey size of Galleria mellonella. Canadian Entomologist 101, 314327.CrossRefGoogle Scholar
Musolin, D.L. & Saulich, A.H. (2000) Summer dormancy ensures univoltinism in the predatory bug Picromerus bidens. Entomologia Experimentalis et Applicata 95, 259267.CrossRefGoogle Scholar
O'Neil, R.J. (1989) Comparison of laboratory and field measurements of the functional response of Podisus maculiventris (Heteroptera: Pentatomidae). Journal of the Kansas Entomological Society 62, 148155.Google Scholar
O'Neil, R.J. (1997) Functional response and search strategy of Podisus maculiventris (Heteroptera: Pentatomidae) attacking Colorado potato beetle (Coleoptera: Chrysomelidae). Environmental Entomology 26, 11831190.CrossRefGoogle Scholar
Poitout, S. & Bues, R. (1970) Elevage de plusieurs espèces de lepidoptères Noctuidae sur milieu artificiel riche et sur milieu artificiel simplifié. Annales de Zoologie Ecologie Animale 2, 7991.Google Scholar
Pschorn-Walcher, H. & Zinnert, K.D. (1971) Investigations on the ecology and natural control of the larch sawfly (Pristiphora erichsonii Htg., Hym.: Tenthredinidae) in central Europe. Part II: Natural enemies: their biology and ecology, and their role as mortality factors in P. erichsonii. Technical Bulletin of the Commonwealth Institute of Biological Control 14, 150.Google Scholar
Rogers, D.J. (1972) Random search and insect population models. Journal of Animal Ecology 41, 369383.CrossRefGoogle Scholar
SAS Institute (1989) SAS/002F;ATAT user's guide, Version 6. 4th edition. Cary, North Carolina, SAS Institute Inc.Google Scholar
Skirvin, D.J. & Fenlon, J.S. (2003) The effect of temperature on the functional response of Phytoseiulus persimilis (Acari: Phytoseiidae). Experimental and Applied Acarology 31, 3749.CrossRefGoogle ScholarPubMed
Sneh, B., Schuster, S. & Broza, M. (1981) Insecticidal activity of Bacillus thuringiensis strains against the Egyptian cotton leaf worm Spodoptera littoralis (Lepidoptera: Noctuidae). Entomophaga 26, 179190.CrossRefGoogle Scholar
Song, Y.H. & Heong, K.L. (1997) Changes in searching responses with temperature of Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae) on the eggs of the brown plant hopper, Nilaparvata lugens (Stal)(Homoptera: Delphacidae). Researches on Population Ecology 39, 201206.CrossRefGoogle Scholar
van der Linden, A. (1996) Control of caterpillars in integrated pest management. IOBC WPRS Bulletin 19, (1): 9194.Google Scholar
Vanhaecke, M. & Degheele, D. (1980) Electrophoretic characterization of the haemolymph proteins, glyco- and lipoproteins of Galleria mellonella, Plodia interpunctella and Ephestia kuehniella. Mededelingen Faculteit Landbouwwetenschappen Rijksuniversiteit Gent 45, 12871297.Google Scholar
van Lenteren, J., Babendreier, D., Bigler, F., Burgio, G., Hokkanen, H.M.T., Kuske, S., Loomans, A.J.M., Menzler-Hokkanen, I., van Rijn, P.C.J., Thomas, M.B., Tommasini, M.G. & Zeng, Q.Q. (2003) Environmental risk assessment of exotic natural enemies used in inundative biological control. BioControl 48, 338.CrossRefGoogle Scholar
Volkov, O.G. & Tkacheva, L.B. (1997) A natural enemy of the Colorado potato beetle – Picromerus bidens. Zashchita Karantin Rastenii 3, 30.Google Scholar
Waddill, V. & Shepard, M. (1975) A comparison of predation by the pentatomids, Podisus maculiventris (Say) and Stiretrus anchorago (F.), on the Mexican bean beetle, Epilachna varivestis Mulsant. Annals of the Entomological Society of America 68, 10231027.CrossRefGoogle Scholar
Wang, B. & Ferro, D.N. (1998) Functional responses of Trichogramma ostriniae (Hymenoptera: Trichogrammatidae) to Ostrinia nubilalis (Lepidoptera: Pyralidae) under laboratory and field conditions. Environmental Entomology 27, 752758.CrossRefGoogle Scholar
Wiedenmann, R.N. & O'Neil, R.J. (1991) Laboratory measurement of the functional response of Podisus maculiventris (Say) (Heteroptera: Pentatomidae). Environmental Entomology 20, 610614.CrossRefGoogle Scholar
Zhang, J., Wang, J., Liu, G. & Yan, Y. (1983) Influences of the humidities and temperature-humidity combinations on Trichogramma ostriniae Pang et Chen (Hymenoptera: Trichogrammatidae). Natural Enemies of Insects 5, 129134.Google Scholar