Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T18:27:59.961Z Has data issue: false hasContentIssue false

Effects of Bacillus thuringiensis Cry1Ab and Cry3Aa endotoxins on predatory Coleoptera tested through artificial diet-incorporation bioassays

Published online by Cambridge University Press:  28 September 2009

M. Porcar*
Affiliation:
Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Apartado Postal 22085, 46071València, Spain
I. García-Robles
Affiliation:
Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Apartado Postal 22085, 46071València, Spain
L. Domínguez-Escribà
Affiliation:
Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Apartado Postal 22085, 46071València, Spain
A. Latorre
Affiliation:
Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Apartado Postal 22085, 46071València, Spain
*
*Author for correspondence Fax: (0034) 963-543-670 E-mail: [email protected]

Abstract

Traditional approaches to studying the effects of genetically modified (GM) crops on beneficial insects involve either field assays, comparing insect population levels between control and GM crops or tritrophic bioassays with contaminated insects – usually larvae or eggs of Lepidoptera – as preys. Here, we report the results of a bioassay using an artificial diet, suitable for predatory Coleoptera, to supply Bacillus thuringiensis (Bt) solubilized Cry1Ab and Cry3Aa as well as trypsin-activated Cry1Ab to Atheta coriaria and Cryptolaemus montrouzieri adults and young larvae of Adalia bipunctata. Water, solubilization buffer and trypsin-treated solubilization buffer were used as controls. In total, 1600 insects were assayed. Assays showed a relatively low mortality rate in the controls, ranging from as low as 7% after 15 days (C. montrouzieri) to about 15–20% after five days (A. bipunctata) or 15 days (A. coriaria). For all three predators, there were no statistical differences between the mortality recorded in any of the treatment groups and the corresponding controls. These results indicate a lack of short- (A. bipunctata) and long-term (A. coriaria and C. montrouzieri) mortality associated with oral ingestion of Cry1Ab and Cry3Aa at the high dose tested (50 μg ml−1). We discuss the relevance of these findings for the ecology of beneficial Coleoptera and compatibility with Bt and GM Bt crops.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Birch, A.N.E., Geoghegan, I.E., Majerus, M.E.N., McNicol, J.W., Hackett, C.A., Gatehouse, A.M.R. & Gatehouse, J.A. (1999) Tri-trophic interactions involving pest aphids, predatory 2-spot ladybirds and transgenic potatoes expressing snowdrop lectin for aphid resistance. Molecular Breeding 5, 7583.CrossRefGoogle Scholar
Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle ScholarPubMed
Broderick, N.A., Raffa, K.F. & Handelsman, J. (2006) Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proceedings of the National Academy of Sciences USA 103, 1519615199.CrossRefGoogle ScholarPubMed
Burgio, G., Lanzoni, A., Accinellia, G., Dinelli, G., Bonetti, A., Marotti, I. & Ramilli, F. (2007) Evaluation of Bt-toxin uptake by the non-target herbivore, Myzus persicae (Hemiptera: Aphididae), feeding on transgenic oilseed rape. Bulletin of Entomological Research 97, 211215.CrossRefGoogle ScholarPubMed
Clark, B.W., Prihoda, K.R. & Coats, J.R. (2006) Subacute effects of transgenic CrylAb Bacillus thuringiensis corn litter on the isopods Trachelipus rathkii and Armadillidium nasatum. Environmental Toxicology and Chemistry 25, 26532661.CrossRefGoogle ScholarPubMed
Down, R.E., Ford, L., Woodhouse, S.D., Raemaekers, R.J.M., Leitch, B., Gatehouse, J.A. & Gatehouse, A.M.R. (2000) Snowdrop lectin (GNA) has no acute toxic effects on a beneficial insect predator, the 2-spot ladybird (Adalia bipunctata L.). Journal of Insect Physiology 46, 379391.CrossRefGoogle ScholarPubMed
Down, R.E., Ford, L., Woodhouse, S.D., Davison, G.M., Majerus, M.E.N., Gatehouse, J.A. & Gatehouse, A.M.R. (2003) Tritrophic interactions between transgenic potato expressing snowdrop lectin (GNA), an aphid pest (peach-potato aphid; Myzus persicae (Sulz.) and a beneficial predator, 2-spot ladybird; Adalia bipunctata L.). Transgenic Research 12, 229241.CrossRefGoogle Scholar
Duan, J.J., Paradise, M.S., Lundgren, J.G., Bokkout, J.T., Jiang, C. & Wiedenmann, R.N. (2006) Assessing nontarget impacts of Bt corn resistant to corn rootworms: Tier-1 testing with larvae of Poecilus chalcites (Coleoptera: Carabidae). Environmental Entomology 35, 135142.CrossRefGoogle Scholar
Groot, A.T. & Dicke, M. (2002) Insect-resistant transgenic plants in a multi-trophic context. Plant Journal 31, 387406.CrossRefGoogle Scholar
Harwood, J.D., Wallin, W.G. & Obrycki, J.J. (2005) Uptake of Bt-endotoxins by non-target herbivores and higher order arthropod predators: molecular evidence from a transgenic corn agroecosystem. Molecular Ecology 14, 28152823.CrossRefGoogle Scholar
Harwood, J.D., Samson, R.A. & Obrycki, J.J. (2007) Temporal detection of Cry1Ab-endotoxins in coccinellid predators from fields of Bacillus thuringiensis corn. Bulletin of Entomological Research 97, 643648.CrossRefGoogle ScholarPubMed
Herrero, S., Gonzalez-Cabrera, J., Ferré, J., Bakker, P.L. & De Maagd, R.A. (2004) Mutations in the Bacillus thuringiensis Cry1Ca toxin demonstrate the role of domains II and III in specificity towards Spodoptera exigua larvae. Biochemical Journal 384, 507513.CrossRefGoogle ScholarPubMed
Hilbeck, A. & Schmidt, J.E.U. (2006) Another view on Bt proteins: How specific are they and what else might they do? Biopesticides International 2, 150.Google Scholar
Hilbeck, A., Moar, W.J., Pusztai-Xarey, M., Filippini, A. & Bigler, F. (1999) Prey-mediated effects of Cry1Ab toxin and protoxin and Cry2A protoxin on the predator Chrysoperla carnea. Entomologia Experimentalis et Applicata 91, 305316.CrossRefGoogle Scholar
Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.CrossRefGoogle ScholarPubMed
Lövei, G.L. & Arpaia, S. (2005) The impact of transgenic plants on natural enemies: a critical review of laboratory studies. Entomologia Experimentalis et Applicata 114, 114.CrossRefGoogle Scholar
Majerus, M.E.N., Kearns, P.W.E., Forge, H. & Burch, L. (1989). Ladybirds as teaching aids: 2. Potential for practical and project work. Journal of Biological Education 23, 187192.CrossRefGoogle Scholar
Raybould, A., Stacey, D., Vlachos, D., Graser, G., Li, X. & Joseph, R. (2007). Non-target organism risk assessment of MIR604 maize expressing mCry3A for control of corn rootworm. Journal of Applied Entomology 131, 391399.CrossRefGoogle Scholar
Romeis, J., Dutton, A. & Bigler, F. (2004) Bacillus thuringiensis toxin (Cry1Ab) has no direct effect on larvae of the green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Journal of Insect Physiology 50, 175183.CrossRefGoogle ScholarPubMed
Saxena, D., Stewart, C.N., Altosaar, I., Shu, Q. & Stotzky, G. (2004) Larvicidal Cry proteins from Bacillus thuringiensis are released in root exudates of transgenic B. thuringiensis corn, potato, and rice but not of B. thuringiensis canola, cotton, and tobacco. Plant Physiology and Biochemistry 42, 383387.CrossRefGoogle Scholar
Schmidt, J.E.U., Braun, C.U., L'Abate, C., Whitehouse, L.P. & Hilbeck, A. (2004) Studies on effects of Bacillus thuringiensis-toxins from transgenic insect-resistant plants on predaceous lady beetles (Coleoptera: Coccinellidae). Mitteilungen der Deutschen Gesellschaft für Allgemeine und Angewandte Entomologie 14, 419422.Google Scholar
Sims, S.R. (1995) Bacillus thuringiensis var. kurstaki (CryIA(c)) protein expressed in transgenic cotton: Effects on beneficial and other non-target insects. Southwestern Entomologist 20, 493500.Google Scholar
Sims, S.R. (1997) Host activity spectrum of the CryIIA Bacillus thuringiensis subsp. kurstaki protein: effects on Lepidoptera, Diptera, and non-target arthropods. Southwestern Entomology 22, 395404.Google Scholar
Thomas, W.E. & Ellar, D.J. (1983) Bacillus thuringiensis var. israelensis crystal delta-endotoxin: effects on insect and mammalian cells and in vivo. Journal of Cell Science 60, 181197.CrossRefGoogle ScholarPubMed