Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-02-10T15:15:50.096Z Has data issue: false hasContentIssue false

Effectiveness of the predatory mite Neoseiulus cucumeris on two-spotted spider mite and western flower thrips: A quantitative assessment

Published online by Cambridge University Press:  07 February 2025

Sajjad Dalir
Affiliation:
Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
Hamidreza Hajiqanbar
Affiliation:
Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
Yaghoub Fathipour*
Affiliation:
Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
Mostafa Khanamani*
Affiliation:
Department of Plant Protection, Faculty of Agriculture, University of Jiroft, Kerman, Iran
*
Corresponding author: Mostafa Khanamani; Email: [email protected]; Yaghoub Fathipour; Email: [email protected]
Corresponding author: Mostafa Khanamani; Email: [email protected]; Yaghoub Fathipour; Email: [email protected]

Abstract

The present study describes the feeding effects of Neoseiulus cucumeris Athias-Henriot (Acari: Phytoseiidae) on western flower thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) and two-spotted spider mite (TSSM), Tetranychus urticae Koch (Acari: Tetranychidae). In addition, daily and total predation capacity, preference, and prey switching potential of this predator were studied on both pest species. WFT had a boosting effect on the biological parameters of N. cucumeris, primarily resulting in shorter developmental time, higher fecundity, and higher population growth potential than TSSM. Although immatures and males of N. cucumeris consumed significantly more TSSM than WFT, there was no significant difference in net predation rate, stable and finite predation rates of the predator between two prey species. We found an average of 10.58 and 7.93 TSSM and WFT are required to produce a single predator egg, respectively. WFT is preferred over TSSM by the predator. Negative switching behaviour was seen in N. cucumeris as it switched from the abundant prey to the rare prey. Both prey species were suitable for N. cucumeris, being able to develop successfully on them. The predator performed optimally on WFT compared with TSSM owing to its enhanced biological parameters as well as its preference, indicating that thrips are a more relevant resource than spider mites.

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abou-Eella, MM and Abou-Eella, GMA (2001) Laboratory studies on development and oviposition of Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae) fed on various preys. Egyptian Journal of Biological Pest Control 11, 115118.Google Scholar
Abrams, P and Matsuda, H (1993) Effects of adaptive predatory and anti-predator behavior in a two prey-one predator system. Evolutionary Ecology 7, 312326. https://doi.org/10.1007/BF01237749CrossRefGoogle Scholar
Afshari-Nejad, N, Hajiqanbar, H and Fathipour, Y (2023) The effect of seven pollens on life table parameters of Neoseiulus cucumeris (Acari: Phytoseiidae). Systematic and Applied Acarology 28, 110. https://doi.org/10.11158/saa.28.1.1Google Scholar
Al-Azzazy, MM, Al-Rehiayani, SM and Abdel-Baky, NF (2018) Life tables of the predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae) on two pest mites as prey, Aculops lycopersici and Tetranychus urticae. Archives of Phytopathology & Plant Protection 51, 637648. https://doi.org/10.1080/03235408.2018.1507013CrossRefGoogle Scholar
Alipour, Z, Fathipour, Y, Farazmand, A and Khanamani, M (2019) Resistant rose cultivar affects life table parameters of two-spotted spider mite and its predators Phytoseiulus persimilis and Amblyseius swirskii (Phytoseiidae). Systematic and Applied Acarology 24, 16201630. https://doi.org/10.11158/saa.24.9.4CrossRefGoogle Scholar
Al-Shemmary, K (2018) The availability of rearing Neoseiulus cucumeris (Oud.) and Neoseiulus barkeri (Hughes) (Acari: Phytoseiidae) on three insect egg species. Egyptian Journal of Biological Pest Control 28, 2879. https://doi.org/10.1186/s41938-018-0084-6CrossRefGoogle Scholar
Asadi, P, Sedaratian-Jahromi, A, Ghane-Jahromi, M and Haghani, M (2019) How Spiromesifen affects some biological parameters and switching behavior of predatory mite Amblyseius swirskii (Acari: Phytoseiidae) when feeding on different ratios of mixed preys. Persian Journal of Acarology 8, 239251. https://doi.org/10.22073/pja.v8i3.47939Google Scholar
Bakker, FM and Sabelis, MW (1989) How larvae of Thrips tabaci reduce the attack success of Phytoseiid predators. Entomologia Experimentalis Et Applicata 50, 4751. https://doi.org/10.1111/j.1570-7458.1989.tb02313.xCrossRefGoogle Scholar
Bazgir, F, Shakarami, J and Jafari, SH (2020) Prey stage preference, mutual interference and switching of Amblyseius swirskii (Acari: Phytoseiidae) on Eotetranychus frosti (Acari: Tetranychidae) and Cenopalpus irani (Acari: Tenuipalpidae). International Journal of Pest Management 66, 262270. https://doi.org/10.1080/09670874.2019.1635724CrossRefGoogle Scholar
Blackwood, JS, Schausberger, P and Croft, BA (2001) Prey-stage preference in generalist and specialist phytoseiid mites (Acari: Phytoseiidae) when offered Tetranychus urticae (Acari: Tetranychidae) eggs and larvae. Environmental Entomology 30, 11031111. https://doi.org/10.1603/0046-225X-30.6.1103CrossRefGoogle Scholar
Chesson, PL (1984) Variable predators and switching behavior. Theoretical Population Biology 26, 126. https://doi.org/10.1016/0040-5809(84)90021-2CrossRefGoogle Scholar
Chi, H (1988) Life-table analysis incorporating both sexes and variable development rate among individuals. Environmental Entomology 17, 2634. https://doi.org/10.1093/ee/17.1.26CrossRefGoogle Scholar
Chi, H (2021a) TWOSEX-MSChart: A Computer Program for the Age-stage, Two-sex Life Table Analysis. Taichung, Taiwan: National Chung Hsing University. http://140.120.197.173/Ecology/prod02.htmGoogle Scholar
Chi, H (2021b) CONSUME-MSChart: A Computer Program for the Age-stage, Two-sex Consumption Rate Analysis. Taichung, Taiwan: National Chung Hsing University. http://140.120.197.173/Ecology/prod02.htmGoogle Scholar
Chi, H and Liu, H (1985) Two new methods for the study of insect population ecology. Bulletin of Institute of Zoology, Academia Sinica 24, 225240.Google Scholar
Chi, H and Yang, TC (2003) Two-sex life table and predation rate of Propylaea japonica Thunberg (Coleoptera: Coccinellidae) fed on Myzus persicae (Sulzer) (Homoptera: Aphididae). Environmental Entomology 32, 327333. https://doi.org/10.1603/0046-225X-32.2.327CrossRefGoogle Scholar
Chow, A and Mackauer, M (1991) Patterns of host selection by four species of aphidiid (Hymenoptera) parasitoids: Influence of host switching. Ecological Entomology 16, 403410. https://doi.org/10.1111/j.1365-2311.1991.tb00233.xCrossRefGoogle Scholar
Dalir, S, Fathipour, Y, Khanamani, M and Hajiqanbar, H (2024) Assessing performance of Amblyseius swirskii as a predatory mite of Tetranychus urticae and Frankliniella occidentalis: Life table and foraging behaviour studies. International Journal of Acarology 50(7), 587594. https://doi.org/10.1080/01647954.2024.2385605CrossRefGoogle Scholar
Dalir, S, Hajiqanbar, H, Fathipour, Y and Khanamani, M (2021a) Age-dependent functional and numerical responses of Neoseiulus cucumeris (Acari: Phytoseiidae) on two-spotted spider mite (Acari: Tetranychidae). Journal of Economic Entomology 114, 5061. https://doi.org/10.1093/jee/toaa266CrossRefGoogle ScholarPubMed
Dalir, S, Hajiqanbar, H, Fathipour, Y and Khanamani, M (2021b) A comprehensive picture of foraging strategies of Neoseiulus cucumeris and Amblyseius swirskii on western flower thrips. Pest Management Science 77, 4185429. https://doi.org/10.1002/ps.6581CrossRefGoogle ScholarPubMed
Fathipour, Y and Maleknia, B (2016) Mite Predators. ed. by, Ecofriendly Pest Management for Food Security. San Diego, CA: Elsevier, 329366.CrossRefGoogle Scholar
Fathipour, Y, Maleknia, B, Soufbaf, M and Reddy, GVP (2020) Functional and numerical responses, mutual interference, and resource switching of Amblyseius swirskii on two-spotted spider mite. Biological Control 146, 104266. https://doi.org/10.1016/j.biocontrol.2020.104266CrossRefGoogle Scholar
Gao, YL, Lei, ZR and Reitz, SR (2012) Western flower thrips resistance to insecticides: Detection, mechanisms and management strategies. Pest Management Science 8, 11111121. https://doi.org/10.1002/ps.3305CrossRefGoogle Scholar
Ghaemmaghami, E, Fathipour, Y, Bagheri, A, Talebi, AA and Zalucki, M (2023) Host preference and negative switching behavior of Trichogramma brassicae (Hymenoptera: Trichogrammatidae) in long term mass rearing. Journal of Crop Protection 12(1), 2942.Google Scholar
Gravandian, M, Fathipour, Y, Hajiqanbar, H, Riahi, E and Riddick, EW (2022) Long-term effects of cattail Typha latifolia pollen on development, reproduction, and predation capacity of Neoseiulus cucumeris, a predator of Tetranychus urticae. BioControl, . https://doi.org/10.1007/s10526-021-10116-4CrossRefGoogle Scholar
Hashemi, S, Asadi, M and Khanamani, M (2021) How does feeding on different diets affect the life history traits of Neoseiulus californicus? International Journal of Acarology 47(5), . https://doi.org/10.1080/01647954.2021.1912175CrossRefGoogle Scholar
He, Z, Guo, JF, Reitz, SR, Lei, ZR and Wu, SY (2020) A global invasion by the thrip, Frankliniella occidentalis: Current virus vector status and its management. Insect Science 27, 626645. https://doi.org/10.1111/1744-7917.12721CrossRefGoogle ScholarPubMed
Heydari, S, Allahyari, H and ZahediGolpayegani, A (2016) Prey preference and switching behavior of Amblyseius swirskii (Acari: Phytoseiidae) on greenhouse whitefly and two-spotted spider mite. Iranian Journal of Plant Protection Science 47, 139150. https://doi.org/10.22059/IJPPS.2016.59297Google Scholar
Huang, YB and Chi, H (2012) Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Science 19, 263273. https://doi.org/10.1111/j.1744-7917.2011.01424.xCrossRefGoogle Scholar
Jones, T, Scott-Dupree, C, Harris, R, Shipp, L and Harris, B (2005) The efficacy of Spinosad against the western flower thrips, Frankliniella occidentalis, and its impact on associated biological control agents on greenhouse cucumbers in southern Ontario. Pest Management Science 61, 179185. https://doi.org/10.1002/ps.939CrossRefGoogle ScholarPubMed
Kadkhodazadeh, F, Asadi, M and Khanamani, M (2021) Suitability of different pollen grains and Tetranychus urticae as food for the predatory mite, Amblyseius swirskii (Acari: Phytoseiidae). Persian Journal of Acarology 10(3), 321334. https://doi.org/10.22073/pja.v10i3.66952Google Scholar
Khanamani, M, Basij, M and Fathipour, Y (2021) Effectiveness of factitious foods and artificial substrate in mass rearing and conservation of Neoseiulus californicus (Acari: Phytoseiidae). International Journal of Acarology 47, 273280. https://doi.org/10.1080/01647954.2021.1895310CrossRefGoogle Scholar
Khanamani, M and Dalir, S (2025) Nutritional value of non-prey food sources for rearing of predatory mites Neoseiulus cucumeris and Amblyseius swirskii (Acari: Phytoseiidae). Persian Journal of Acarology 14(1), . https://doi.org/10.22073/pja.v14i1.85955Google Scholar
Khodayari, S, Fathipour, Y and Sedaratian, A (2016) Prey stage preference, switching and mutual interference of Phytoseius plumifer (Acari: Phytoseiidae) on Tetranychus urticae (Acari: Tetranychidae). Systematic and Applied Acarology 21, 347355. https://doi.org/10.11158/saa.21.3.9CrossRefGoogle Scholar
Kirk, WDJ and Terry, LI (2003) The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agricultural Entomology 5, 301310. https://doi.org/10.1046/j.1461-9563.2003.00192.xCrossRefGoogle Scholar
Li, JM, Yang, YY, Qu, YF and Wu, QH (2003) Experimental population life table of Amblyseius cucumeris with Polyphagotarsonemus latus as prey. Acta Phytopathologica Sinica 30, 389395.Google Scholar
McMurtry, JA, Moraes, GJD and Sourassou, NF (2013) Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Systematic and Applied Acarology 18, 297320. https://doi.org/10.11158/saa.18.4.1CrossRefGoogle Scholar
Murdoch, WW (1969) Switching in general predators: Experiments on predator specificity and stability of prey populations. Ecological Monographs 39, 335354. https://doi.org/10.2307/1942352CrossRefGoogle Scholar
Naqshbandi, SS, Fathipour, Y, Hajiqanbar, H and Yazdanpanah, S (2023) Long-term effects of saffron pollen on development, reproduction and predation capacity of Neoseiulus cucumeris (Acari: Phytoseiidae). Acarologia 63, 188200. https://doi.org/10.24349/fmo4-ewckCrossRefGoogle Scholar
Popov, SY and Kondryakov, AV (2008) Reproductive tables of predatory phytoseiid mites (Phytoseiulus persimilis. Galendromus Occidentalis, and Neoseiulus Cucumeris). Entomological Review 88, 658665.CrossRefGoogle Scholar
Ranabhat, NB, Goleva, I and Zebitz, CPW (2014) Life tables of Neoseiulus cucumeris exclusively fed with seven different pollens. BioControl 59, 195203. https://doi.org/10.1007/s10526-013-9556-5CrossRefGoogle Scholar
Reitz, SR (2009) Biology and ecology of the western flower thrips (Thysanoptera: Thripidae): The making of a pest. Florida Entomologist 92, 713. https://doi.org/10.1653/024.092.0102CrossRefGoogle Scholar
Sabelis, MW (1985) Development. In Helle, W and Sabelis, MW (eds), Spider Mites: Their biology, Natural Enemies and Control. Amesterdam: Elsevier, Vol. 1B, pp. 4353.Google Scholar
Sarwar, M, Wu, K and Xu, X (2009) Evaluation of biological aspects of the predacious mite Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae) due to prey changes using selected arthropods. International Journal of Acarology 35, 503509. https://doi.org/10.1080/01647950903468240CrossRefGoogle Scholar
Trichilo, PJ and Leigh, TF (1986) Predation on spider mite eggs by the western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), an opportunist in a cotton agroecosystem. Environmental Entomology 15, 821825. https://doi.org/10.1093/ee/15.4.821CrossRefGoogle Scholar
Van Lenteren, JV, Roskam, MM and Timmer, R (1997) Commercial mass production and pricing of organisms for biological control of pests in Europe. Biological Control 10, 143149. https://doi.org/10.1006/bcon.1997.0548CrossRefGoogle Scholar
Whalon, ME, Mota-Sanchez, D, Hollingworth, RM and Duynslager, L (2012) Arthropod pesticide resistance database. www.pesticideresistance.com (accessed 21 February 2002).Google Scholar
Wilson, LT, Trichilo, PJ and Gonzalez, D (1991) Natural enemies of spider mites (Acari: Tetranychidae) on cotton: Density regulation or casual association? Environmental Entomology 20, 849856. https://doi.org/10.1093/ee/20.3.849CrossRefGoogle Scholar
Xiao, Y and Fadamiro, HY (2010) Functional responses and prey-stage preferences of three species of predacious mites (Acari: Phytoseiidae) on citrus red mite, Panonychus citri (Acari: Tetranychidae).Biological Control 53 345352. https://doi.org/10.1016/j.biocontrol.2010.03.001CrossRefGoogle Scholar
Xu, X, Borgemeister, C and Poehling, HM (2006) Interactions in the biological control of western flower thrips Frankliniella occidentalis (Pergande) and two-spotted spider mite Tetranychus urticae Koch by the predatory bug Orius insidiosus Say on beans. Biological Control 36, 5764. https://doi.org/10.1016/j.biocontrol.2005.07.019CrossRefGoogle Scholar
Xu, X and Enkegaard, A (2010) Prey preference of the predatory mite, Amblyseius swirskii between first instar western flower thrips Frankliniella occidentalis and nymphs of the twospotted spider mite Tetranychus urticae. Journal of Insect Science 10(1), 149. https://doi.org/10.1673/031.010.14109CrossRefGoogle ScholarPubMed
Yazdanpanah, S, Fathipour, Y and Riahi, E (2022) Cost-effective and efficient factitious prey for mass production of Neoseiulus cucumeris (Acari: Phytoseiidae): Assessing its quality compared with natural prey. Egyptian Journal of Biological Pest Control 32, 116. https://doi.org/10.1186/s41938-022-00518-6CrossRefGoogle Scholar
Yazdanpanah, S, Fathipour, Y, Riahi, E and Zalucki, MP (2023) Effects of diet switching from almond pollen to natural prey on predation capacity of Neoseiulus cucumeris. Journal of Applied Entomology 47, 7284. https://doi.org/10.1111/jen.13081CrossRefGoogle Scholar
Zhang, Y, Zhang, ZQ, Lin, J and Ji, J (2000) Potential of Amblyseius cucumeris (Acari: Phytoseiidae) as a biocontrol agent against Schizotetranychus nanjingensis (Acari: Tetranychidae) in Fujian, China. Systematic and Applied Acarology 4, 109124. https://doi.org/10.11158/saasp.4.1.11Google Scholar
Zhang, YX, Zhang, ZQ, Chen, CP, Lin, JZ and Chen, X (2001) Amblyseius cucumeris (Acari: Phytoseiidae) as a biocontrol agent against Panonychus citri (Acari: Tetranychidae) on citrus in China. Systematic and Applied Acarology 6, 3544. https://doi.org/10.11158/saa.6.1.6CrossRefGoogle Scholar