Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T08:00:34.711Z Has data issue: false hasContentIssue false

Effect of antibiotic on survival and development of Spodoptera litura (Lepidoptera: Noctuidae) and its gut microbial diversity

Published online by Cambridge University Press:  24 February 2016

A. Thakur
Affiliation:
Department of Zoology, Guru Nanak Dev University, Amritsar (Punjab), 143005, India
P. Dhammi
Affiliation:
Department of Microbiology, Guru Nanak Dev University, Amritsar (Punjab), 143005, India
H.S. Saini
Affiliation:
Department of Microbiology, Guru Nanak Dev University, Amritsar (Punjab), 143005, India
S. Kaur*
Affiliation:
Department of Zoology, Guru Nanak Dev University, Amritsar (Punjab), 143005, India
*
*Author for correspondence Phone: +91-0183-2258802-09 Ext. 3397 Fax: +91-0183-2258819/2258820 E-mail: [email protected]

Abstract

Addition of antibiotics to artificial diets of insects is a key component in the rearing of insects in the laboratory. In the present study an antimicrobial agent, streptomycin sulphate was tested for its influence on survival and fitness of Spodoptera litura (Fabricus) (Lepidoptera: Noctuidae) as well as its gut microbial diversity. The antibiotic did not adversely affect the survival of S. litura. Faster growth of larvae was recorded on diet amended with different concentrations of streptomycin sulphate (0.03, 0.07 and 0.15%) as compared to diet without streptomycin sulphate. The overall activity of various digestives enzymes increased on S+ diet while the activity of detoxifying enzymes significantly decreased. In addition, alteration in microbial diversity was found in the gut of S. litura larvae fed on diet supplemented with antibiotic (S+) and without antibiotic (S−).

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, J., Porteous, A. & Wood, N.D. (1989) The cutworm Peridroma saucia (Lepidoptera: Noctuidae) supports growth and transport of pbr322-bearing bacteria. Applied and Environmental Microbiology 55, 22002205.Google Scholar
Bahar, A.A. & Demirbag, Z. (2007) Isolation of pathogenic bacteria from Oberea linearis (Coleptera: Cerambycidae). Biologia 62, 1318.CrossRefGoogle Scholar
Bell, J.V., King, E.G. & Hamalle, R.J. (1981) Some microbial contaminants and control agents in a diet and larvae of Heliothis spp. Journal of Invertebrate Pathology 37, 243248.Google Scholar
Berenbaum, M.R. (1988) Micro-organisms as mediators of intertrophic and intratrophic interactions. pp. 91123in Barbosa, P. & Letourneau, D.K. (Eds) Novel Aspects of Insect-Plant Interactions. New York, Wiley.Google Scholar
Bernfeld, P. (1955) Amylases, α and β. Methods in Enzymology 1, 149158.Google Scholar
Broderick, N.A., Raffa, K.F. & Handelsman, J. (2006) Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proceedings of National Academy of Sciences of the United States America 103, 1519615199.Google Scholar
Brune, A. (2003) Symbionts aiding digestion. pp. 11021107in Resh, V.H. & Cardé, R.T. (Eds) Encyclopedia of Insects. New York, Academic Press.Google Scholar
Bucher, G.E. (1963) Nonsporulating bacterial pathogens. pp. 117147in Steinhaus, E.A. (Ed.) Insect Pathology. New York, Academic Press.Google Scholar
Buyukguzel, K. & Yazgan, S. (2002) Effects of antimicrobial agents on the survival and development of larvae of Pimpla turionellae L. (Hymenoptera: Ichneumonidae) reared on an artificial diet. Turkish Journal of Zoology 26, 111119.Google Scholar
Campos, Y., Sepúlveda, B.A. & Tume, P. (2007) Entomopathogenicity of native bacteria from Anastrepha fraterculus and Ceratitis capitata against the pest Phyllocnistis citrella. Pest Management Science 63, 394398.Google Scholar
Chien, C. & Dauterman, W.C. (1991) Studies on glutathione-s-transferases in Helicoverpa (Heliothis) zea. Insect Biochemistry 21, 857864.Google Scholar
Childress, D. & Williams, P.P. (1973) Control of a bacterial contaminant of boll weevil diet. Journal of Economic Entomology 66, 554555.CrossRefGoogle Scholar
Clissold, F.J., Tedder, B.J., Conigrave, A.D. & Simpson, S.J. (2010) The gastrointestinal tract as a nutrient-balancing organ. Proceedings of the Royal Society B: Biological Sciences 277, 17511759.Google Scholar
Cohen, A.C. (1993) Organization of digestion and preliminary characterization of salivary trypsin-like enzymes in a predaceous heteropteran, Zelus renardii. Journal of Insect Physiology 39, 823829.Google Scholar
Cohen, A.C. (2003) Insect Diets: Science & Technology. CRC Press, Boca Raton, FL.Google Scholar
Davidson, E.W., Rosell, R.C. & Hend, D.R. (2000) Culturable bacteria associated with the whitefly, Bemesia argentifolii (Homoptera: Aleyrodidae). Florida Entomologist 83, 159171.Google Scholar
Desbois, A.P. & Coote, P.J. (2011) Wax moth larva (Galleria mellonella): an in vivo model for assessing the efficacy of antistaphylococcal agents. Journal of Antimicrobial Chemotherapy 66, 17851790.Google Scholar
Douglas, A.E. (1992) Microbial brokers of insect-plant interactions. pp. 329–336 in Proc. 8th International Symposium on Insect-Plant Relationships. Dordrecht, Neth, Kluwer.Google Scholar
Farrar, R.R., Barbour, J.D. & Kennedy, K.G. (1989) Quantifying food consumption and growth in insects. Annals of Entomological Society of America 82, 593598.Google Scholar
Ferreira, C. & Terra, W.R. (1983) Physical and kinetic properties of a plasma-membrane-bound p-D- glucosidase (cellobiase) from midgut cells of an insect (Rhynchosciara americana larva). Biochemistry Journal 213, 4351.CrossRefGoogle Scholar
Flint, H.J., Bayer, E.A., Rincon, M.T., Lamed, R. & White, B.A. (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nature Reviews of Microbiology 6, 121131.Google Scholar
Grimont, P.A.D. & Grimont, F. (1978) The genus Serratia. Annual Review of Microbiology 32, 221248.Google Scholar
Gupta, G.P., Rani, S., Birah, A. & Raghuraman, M. (2005) Improved artificial diet for mass rearing of the tobacco caterpillar, Spodoptera litura (Lepidoptera: Noctuidae). International Journal of Tropical Insect Science 25, 5558.Google Scholar
Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT’. Nucleic Acids Symposium Series 41, 9598.Google Scholar
He, C., Nan, X., Zhang, Z. & Menglou, L. (2013) Composition and diversity analysis of the gut bacterial community of the oriental armyworm, Mythimna separata, determined by culture-independent and culture-dependent techniques. Journal of Insect Science 13, 165.Google Scholar
Jones, R.T., Sanchez, L.G. & Fierer, N. (2013) A cross-taxon analysis of insect-associated bacterial diversity. PLoS ONE 8(4), e61218.Google Scholar
Katzenellenbogen, B. & Kafatos, F.C. (1971) General esterases of silk worm moth moulting fluid: preliminary characterization. Journal of Insect Physiology 17, 11391151.Google Scholar
Koch, H. & Schmid, H.P. (2011) Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proceedings of the National Academy of Sciences of the United States of America 108, 1928819292.CrossRefGoogle ScholarPubMed
Kranthi, K.R., Jadhav, D.R., Kranthi, S., Wanjari, R.R., Ali, S.S. & Russell, D.A. (2002) Insecticide resistance in five major insect pests of cotton in India. Crop Protection 21, 449460.CrossRefGoogle Scholar
Krieg, N.R. & Holt, J.G. (1986) Gram-negative aerobic rods and cocci. pp. 140218in Palleroni, N.J. (Ed.) Bergey's Manual of Systematic Bacteriology. Baltimore, Williams and Wilkins.Google Scholar
Ley, R.E., Lozupone, C.A., Hamady, M., Knight, R. & Gordon, J.I. (2008) Worlds within worlds: evolution of the vertebrate gut microbiota. Nature Reviews Microbiology 6, 776788.CrossRefGoogle ScholarPubMed
Lin, X.L., Kang, Z.W., Pan, Q.J. & Liu, T.X. (2015) Evaluation of five antibiotics on larval gut bacterial diversity of Plutella xylostella (Lepidoptera: Plutellidae). Insect Science 22, 619628.Google Scholar
Liu, Y.B., Tabashnik, B.E., Moar, W.J. & Smith, R.A. (1998) Synergism between Bacillus thuringiensis spores and toxins against resistant and susceptible diamondback moths (Plutella xylostella). Applied and Environmental Microbiology 64, 13851389.Google Scholar
Mac Intyre, R.J. (1971) A method for measuring activities of acid phosphatases separated by acrylamide gel electrophoresis. Biochemical Genetics 5, 4550.Google Scholar
Madhaiyan, M., Poonguzhali, S., Kwon, S.W. & Sa, T.M. (2010) Bacillus methylotrophicus sp. nov., a methanol utilizing, plant-growth-promoting bacterium isolated from rice rhizosphere soil. International Journal of Systematic and Evolutionary Microbiology 60, 24902495.Google Scholar
Moran, N.A., Russell, J.A., Koga, R. & Fukatsu, T. (2005) Evolutionary relationships of three new species of Enterobacteriaceae living as symbionts of aphids and other insects. Applied and Environmental Microbiology 71, 33023310.Google Scholar
Ojha, S., Mishra, S., Kapoor, S. & Chand, S. (2013) Synthesis of hexyl α-glucoside and α-polyglucosides by a novel Microbacterium isolate. Applied Microbiology and Biotechnology 97, 52935301.Google Scholar
Osborn, F., Berlioz, L., Vitelli-Flores, J., Monsalve, W., Dorta, B. & Lemoine, V.D. (2002) Pathogenic effects of bacteria isolated from larvae of Hylesia metabus Crammer (Lepidoptera: Saturniidae). Journal of Invertebrate Pathology 80, 712.Google Scholar
Osborne, S., Leong, Y., O′Neill, S. & Johnson, K. (2009) Variation in antiviral protection mediated by different Wolbachia strains in Drosophila simulans. PLOS Pathogens 5(11), e1000656.Google Scholar
Paramasiva, I., Sharma, H.C. & Krishnayya, P.V. (2014) Antibiotics influence the toxicity of the delta endotoxins of Bacillus thuringiensis towards the cotton bollworm, Helicoverpa armigera. BMC Microbiology 14, 200.Google Scholar
Qin, H., Ye, Z., Huang, S., Ding, J. & Luo, R. (2004) The correlations of the different host plants with preference level, life duration and survival rate of Spodoptera litura (Fabricius). Chinese Journal of Eco-Agriculture 12, 4042.Google Scholar
Rao, N.V., Rajasekhar, P., Venkataiah, M. & Rao, R.B. (1994) Cotton pest control problems in Andhra Pradesh, India-optimizing pest management options for a more sustainable approach to cotton cultivation. pp. 563568 in GA Constable NW Forrester Proceedings, Challenging the Future.Google Scholar
Rosengaus, R.B., Zecher, N.C., Schultheis, K.F., Brucker, R.M. & Bordenstein, S.R. (2011) Disruption of the termite gut microbiota and its prolonged consequences for fitness. Applied and Environmental Microbiology 77, 43034312.Google Scholar
Saha, K., Maity, S., Roy, S., Pahan, K., Pathak, R., Majumdar, S. & Gupta, S. (2014) Optimization of amylase production from B. amyloliquefaciens (MTCC 1270) using solid state fermentation. International Journal of Microbiology, 17. doi:10.1155/2014/764046.Google Scholar
Sambrook, J., Fritsch, E.F. & Maniatis, T. (1989) Isolation of DNA from mammalian cells. pp 916919in Ford, N., Nolan, C. & Ferguson, M. (Eds) Molecular Cloning – A Laboratory Manual. 2nd edn. New York, Cold Spring Harbor Laboratory Press.Google Scholar
Sandra, W.W. & Douglas, I.G. (2004) Microorganisms associated with field-collected Chrysoperla rufilabris (Neuroptera: Chrysopidae) adults with emphasis on yeast symbionts. Biological Control 29, 155168.Google Scholar
Shil, R.K., Mojumder, S., Sadida, F.F., Uddin, M. & Sikdar, D. (2014) Isolation and identification of cellulolytic bacteria from the gut of three phytophagous insect species. Brazilian Archives of Biology and Technology 57, 927932.Google Scholar
Singh, P. & House, H.L. (1970) Antimicrobials: ‘Safe’ levels in a synthetic diet of an insect, Agria affinis. Journal of Insect Physiology 16, 17691782.Google Scholar
Sneath, P.H.A., Mair, N.S., Sharpe, M.E. & Holt, J.G. (1986) Regular, nonsporing gram-positive rods. pp. 12081260in Kandler, O. & Weiss, N. (Eds) Bergey's Manual of Systematic Bacteriology. Baltimore, MD, USA, Williams and Wilkins.Google Scholar
Sorensen, A., Mayntz, D., Simpson, S.J., & Raubenheimer, D. (2010) Dietary ratio of protein to carbohydrate induces plastic responses in the gastrointestinal tract of mice. Journal of Comparative Physiology B 180, 259266.Google Scholar
Sudhakaran, R. (2002) Efficacy of lufenuron (Match 5% EC) against Spodoptera litura (F.) under in vitro condition. Insect Environment 8, 4748.Google Scholar
Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007) ‘MEGA4: molecular evolutionary genetics analysis (MEGA) software Version 4.0′. Molecular Biology and Evolution 24, 15961599.Google Scholar
Teixeira, L., Ferreira, A. & Ashburner, M. (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PloS Biology 6, 12. doi: 10.1371/journal.pbio.1000002.Google Scholar
Terra, W.R., Ferreira, C., Jordao, B.P. & Dillon, R.J. (1996) Digestive enzymes. pp. 153194in Lehane, M.J. & Billingsley, P.F. (Eds) Biology of the Insect Midgut. London, Chapman and Hall.Google Scholar
Tsujita, T., Ninomiya, H. & Okuda, H. (1989) p-Nitrophenyl butyrate hydrolyzing activity of hormone-sensitive lipase from bovine adipose tissue. Journal of Lipid Research 30, 9971004.Google Scholar
Wheeler, D.A. & Isman, M.B. (2001) Antifeedant and toxic activity of Trichilia americana extract against the larvae of Spodoptera litura. Entomologia Experimentalis et Applicata 98, 916.Google Scholar