Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T06:39:53.418Z Has data issue: false hasContentIssue false

Dominance, activity density and prey preferences of rove beetles (Coleoptera: Staphylinidae) in conventionally treated Hungarian agro-ecosystems

Published online by Cambridge University Press:  18 February 2008

A. Balog*
Affiliation:
Sapientia University, Faculty of Technical Science, Department of Horticulture, Ro-540485, POB 9, Cp.4, Tg-Mures/Corunca, Sighisoara str. 1C, Romania: Corvinus University Budapest, Faculty of Horticultural Science, Department of Entomology, H-1052, POB 53, Hungary:
V. Markó
Affiliation:
Corvinus University Budapest, Faculty of Horticultural Science, Department of Entomology, H-1052, POB 53, Hungary:
P. Szarvas
Affiliation:
University of Debrecen, Centre of Agricultural Science, Department of Plant Protection, H-4015, POB 36, Hungary
*
*Author for correspondence Fax: +40 0265 206 211 E-mail: [email protected]

Abstract

Field experiments were conducted to investigate the mechanism underlying patterns of the rove beetle populations in apple and pear orchards (1998–2002) and winter wheat (2006–2007) in Hungary following treatment with broad-spectrum insecticide. The capacity of predatory staphylinid species to feed on cereal pests was measured, with six species tested in petri dishes, in the laboratory at room temperature. Almost 23% of the Hungarian and 13% of the European staphylinid fauna are represented in the investigated agro-ecosystems. In orchards, 5236 individuals, belonging to 253 species, were collected. The most widely occurring were Omalium caesum Gravenhorst, Drusilla canaliculata (F.), Dinaraea angustula (Gyllenhal), Palporus nitidulus (F.), Xantholinus. longiventris (Olivier), X. linearis (Olivier) and Aleochara bipustulata (L.). In winter wheat, 798 individuals and 20 species were collected, the most frequent were Staphylinus caesareus Cederh, Tachyporus hypnorum (F.), Philonthus cognatus (Stephens), Aloconota gregaria (Erichson), Tachyporus chrysomelinus (L.) and T. obtusus (L.). Species composition differed by crop (apple, pear and wheat), soil composition and surrounding habitat. Species diversity was also influenced by these parameters. In wheat, one acute change in species composition was observed with the decline of Tachyporus spp., which occurred equally across all farms. The consumption rate of prey by the dominant species occurring in wheat ecosystems was relatively high; however, we did not offer any fungal food to compare with insects' prey.

Type
Research Paper
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aebischer, N.J. & Potts, G.R. (1990) Long-term changes in numbers of cereal invertebrates assessed by monitoring. Pests and Diseases 1, 163172.Google Scholar
Andersen, A. (1991) Carabidae and Staphylinidae (Col.) frequently found in Norwegian agricultural fields. New data and review. Fauna Norvegica Seria B 38, 6576.Google Scholar
Andersen, A. (2000) Long term developments in the Carabid and Staphylinid (Col. Carabidae and Staphylinidae) fauna during the conversion from conventional to biological farming. Journal of Applied Entomology 124, 5156.CrossRefGoogle Scholar
Balog, A., Markó, V., Kutasi, Cs. & Ádám, L. (2003) Species Composition of Ground Dwelling Staphylinid (Coleoptera: Staphylinidae) Communities in Apple and Pear Orchards in Hungary. Acta Phytopathologica et Entomologica Hungarica 38(1–2), 181198.CrossRefGoogle Scholar
Bogya, S., Szinetár, Cs. & Markó, V. (1999) Species composition of spider (Araneae) communities in apple and pear orchards in the Carpathian basin. Acta Phytopathologica et Entomologica Hungarica 34(1–2), 99121.Google Scholar
Bryan, K. & Wratten, S.D. (1984) The responses of polyphagous predators to prey spatial heterogenity: aggregation by carabid and staphylinid beetles to their cereal aphid prey. Ecological Entomology 9(3), 251259.CrossRefGoogle Scholar
Burel, F. (1996) Hedgerows and their role in agricultural landscapes. Critical Reviews in Plant Sciences 15(2), 169190.CrossRefGoogle Scholar
Dennis, P., Wratten, S.D. & Sotherton, N.W. (1990) Feeding behaviour of the Staphylinid beetle Tachyporus hypnorum in relation to its potential for reducing aphid numbers in wheat. Annales of Applied Biology 117, 267276.Google Scholar
Dennis, P., Wratten, S.W. & Sotherton, N.W. (1991) Mycophagy as a factor limiting predation of aphids (Hemiptera: Aphididae) by Staphylinid beetles (Coleoptera: Staphylinidae) in cereals. Bulletin of Entomological Research 81, 2531.CrossRefGoogle Scholar
Freude, H., Harde, W.K. & Lohse, G.A. (1964) Die Käfer Mitteleuropas. Band 4 Staphylinidae I. 264 pp. Krefeld, Germany, Goecke & Evers Verlag.Google Scholar
Freude, H., Harde, W.K. & Lohse, G.A. (1974) Die Käfer Mitteleuropas. Band 5 Staphylinidae II. 381 pp. Krefeld, Germany, Goecke & Evers Verlag.Google Scholar
Galli, P. (1985) Integrated plant protection in Baden-Wurttemberg apple growing. Training, advisory services and experiments within the framework of a model plan for introducing an integrated procedure into commercial fruit growing. Schriftenreihe des Bundesministers fur Ernahrung, Landwirtschaft und Forsten, Angewandte Wissenschaft 319, 5465.Google Scholar
Good, J.A. & Giller, P.S. (1991) The diet of predatory Staphylinid beetles – a review of records. Entomologist′s Monthly Magazine 127, 7789.Google Scholar
Heyer, W. (1994) Occurrence of epigeal predatory arthropods in apple orchards – a basic approach to a risk assessment. Planzenschutzdienstes 2, 1518.Google Scholar
Holling, C.S. (1966) The functional response of invertebrate predators to prey density. Memoirs of the Entomological Society of Canada 48, 186.Google Scholar
Knopp, M. (1997) Research on integrated pest management of apple and peaches in the highlands of Yemen. Institut für Pflanzenproduction in den Tropen und Subteran 3, 2529.Google Scholar
Krebs, C.J. (1989) Ecological Methodology. 250 pp. New York, Harper & Row.Google Scholar
Krooss, S. & Schaefer, M. (1998) The effect of different farming systems on epigeic arthropods: a five-year study on the rove beetles fauna (Coleoptera: Staphylinidae) of winter wheat. Agriculture, Ecosystems and Environment 69, 121133.CrossRefGoogle Scholar
Kutasi, Cs., Balog, A. & Markó, V. (2001) Ground dwelling Coleoptera fauna of commercial apple orchards. Integrated Fruit Production. IOBC/wprs Bulletin 24(5), 215219.Google Scholar
Levesque, C. & Levesque, D.I. (1995) Abundance, diversity and dispersal power of rove beetles (Col: Staphylinidae) in a raspberry plantation and adjacent sites in Eastern Canada. Journal of Kansas Entomological Society 3, 355370.Google Scholar
Levesque, C. & Levesque, D.I. (1996) Seasonal dynamics of rove beetles (Col: Staphylinidae) in a raspberry plantation and adjacent sites in Eastern Canada. Journal of Kansas Entomological Society 4, 285301.Google Scholar
Luff, M.L. & Eyre, M.D. (1988) Soil-surface activity of weevils (Coleoptera: Curculionidae) in grassland. Pedobiologia 32, 3946.Google Scholar
Magura, T. & Tóthmérész, B. (1997) Testing edge effect on carabid assemblages in an oak-hornbeam forest. Acta Zoologica Academiae Scientiarum Hungaricae 43(4), 303312.Google Scholar
Magura, T., Téthmérész, B. & Bordan, Z. (1997) Comparison of the carabid communities of a zonal oak-hornbeam forest and pine plantations. Acta Zoologica Academiae Scientiarum Hungaricae 43(3), 173180.Google Scholar
Majzlan, O. & Holecová, M. (1993) Arthropodocoenoses of an orchards ecosystem in urban agglomeration. Ecologia (Bratislava) 12(2), 121129.Google Scholar
Markó, V., Merkl, O., Podlussány, A., Víg, K., Kutasi, Cs. & Bogya, S. (1995) Species composition of Coleoptera assemblages in the canopies of Hungarian apple and pear orchards. Acta Phytopathologica et Entomologica Hungarica 30(3–4), 221245.Google Scholar
Mészáros, Z., Ádám, L., Balázs, K., Benedek, M.I., Csikai, Cs., Draskovits, D.Á., Kozár, F., Lővei, G., Mahunka, S., Meszleny, A., Mihályi, F., Mihályi, K., Nagy, L., Oláh, B., Papp, J., Polgár, L., Radwan, Z., Rácz, V., Ronkay, L., Solymai, P., Soós, Á., Szabó, S., Szabóky, Cs., Szalay-Marzsó, L., Sarukán, I., Szelényi, G., Szentkirályi, F., Sziráki, Gy., Szeőke, L. & Török, L. (1984) Results of faunistical and floristical studies in Hungarian apple orchards (Apple Ecosystem Research No. 26.). Acta Phytopathologica et Entomologica Hungarica 19(1–2), 91176.Google Scholar
Perner, J. & Malt, S. (2002) Zur epigäischen Arthropodenfauna von landwirtschaflichen Nutzflachen im Thüringen Becken Teil 2. Käfer (Insecta: Coleoptera) 16(22), 267271.Google Scholar
Pielou, E.C. (1984) The Interpretation of Ecological Data: A Primer on Classification and Ordination. 288 pp. New York, Wiley-IEEE.Google Scholar
Ravn, H.P. & Holm, S. (1997) On the importance of the surroundings for insect pests in fields. 14th Danish Plant Protection Conference. Pests and Diseases. SP Rapport Statens Planteavlsforsog 8, 179188.Google Scholar
Reede, R.H. (1985) Integrated pest management in apple orchards in the Netherlands: a solution for selective control of tortricids. Mededeling Laboratorium voor Entomologie Wageningen 493, 105.Google Scholar
Schenk, D. & Bacher, S. (2002) Functional response of a generalist insect predator to one of its prey species in the field. Journal of Animal Ecology 71, 524531.CrossRefGoogle Scholar
Shah, P.A., Brooks, D.R., Ashby, J.E., Perry, J.N. & Woiwod, I.P. (2003) Diversity and abundance of the coleopteran fauna from organic and conventional management system in southern England. Agricultural and Forest Entomology 5, 5160.Google Scholar
Sunderland, K.D., Crook, N.E., Staccy, D.L. & Fuller, B.J. (1987) Study of feeding by polyphagous predators on cereal aphids using ELISA and gut dissection. Journal of Applied Ecology 24, 907933.Google Scholar
Tóth, L. (1982) Magyarország Állatvilága – Fauna Hungariae, Holyvák II. – Staphylinidae II. VII (6). 110 pp. Budapest, Akadémiai Kiadó.Google Scholar
Tóth, L. (1984) Magyarország Állatvilága – Fauna Hungariae, Holyvák III. – Staphylinidae III. VII (11). 142 pp. Budapest, Akadémiai Kiadó.Google Scholar
Tóthmérész, B. (1995) Comparison of different methods for diversity ordering. Journal of Vegetation Science 6(2), 283290.CrossRefGoogle Scholar
Wardle, D.A., Nicholson, K.S. & Yeates, G.W. (1993) Effect of weed management strategies on some soil-associated arthropods in maize and asparagus ecosystems. Pedobiologia 37, 257269.Google Scholar
Zerche, L. (1996a) Studien alpiner und montaner Oxypoda-Arten (Coleoptera: Staphylinidae, Aleocharinae). Beiträge zur Entomologie 46(1), 2533.Google Scholar
Zerche, L. (1996b) Die Oxypoda-Arten der Kanarischen Inseln (Coleoptera: Staphylinidae, Aleocharinae). Taxonomie, Bionomie, Phylogenie und Biogeographie. Beiträge zur Entomologie 46(2), 277372.Google Scholar