Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T04:51:13.743Z Has data issue: false hasContentIssue false

Does natural larval parasitism of Lobesia botrana (Lepidoptera: Tortricidae) vary between years, generation, density of the host and vine cultivar?

Published online by Cambridge University Press:  09 March 2007

A. Xuéreb
Affiliation:
UMR INRA-ENITAB 1065 Santé Végétale, INRA, BP 81, 33883, Villenave d'Ornon Cedex, France
D. Thiéry*
Affiliation:
UMR INRA-ENITAB 1065 Santé Végétale, INRA, BP 81, 33883, Villenave d'Ornon Cedex, France
*
*Fax: +33 5 57 12 26 32 E-mail: [email protected]

Abstract

pulations of European grapevine moth Lobesia botrana Franc, Sauvignon, Cabernet Sauvignon and Sémillon) using a natural L. botrana population during the first year, and a natural population supplemented with artificially inoculated individuals during the second year. Levels of natural populations of larval parasitoids were measured by their parasitism rate. The ichneumonid Campoplex capitator Aubert was the most common species collected from L. botrana larvae. Its incidence was higher during the spring compared to summer. The overall parasitism rate found on the experimental vineyard varied from 23% in 2000 to 53% in 2001, and was mainly due to C. capitator. Parasitism was not affected by the grape cultivar on which the host developed but was positively correlated with the host density, per bunch or per stock, suggesting that among the five grape cultivars tested, C. capitator females probably do not discriminate between hosts feeding on different grape cultivars, but rather the densities of L. botrana larvae.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aubert, J.F. (1983) Ichneumonides parasites de Coléophorides et quelques autres microlépidoptères au Musée de Verone. Bolletino des Museo Civico di Storia Naturale di Verona 9, 916.Google Scholar
Barnay, O. (1999) Dynamique des populations et relation hôte-parasitoïde chez le couple Lobesia botrana Den & Schiff. – Trichogramma cacaeciae Marchal, dans le cadre de la lutte biologique en vignoble 147 Paris Thèse Université Pierre et Marie CurieGoogle Scholar
Campbell, R.K., Salto, C.E., Summer, L.C. & Eikenbarry, R.D. (1990) Tritrophic interactions between grains, aphids and a parasitoid. Symposia Biologica Hungarica 39, 393401.Google Scholar
Castaneda-Samayoa, O.R., Holst, H., Ohnesorge, B. (1993) Evaluation of some Trichogramma species with respect to biological control of Eupoecilia ambiguella and Lobesia botrana Schiff. (Lep., Tortricidae). Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz 100, 599610.Google Scholar
Clancy, K.M. & Price, P.W. (1987) Rapid herbivore growth enhances enemy attack: sublethal plant defenses remain a paradox. Ecology 68, 736738.CrossRefGoogle Scholar
Coscolla, R. (1997) La polilla del racimo de la vid (Lobesia botrana Den. Y Schiff.) pp. 207238 Sèrie tècnica Generalitat Valenciana, Conselleria de agricultura, pesca y alimentacion.Google Scholar
Charnov, E.L. (1982) The theory of sex allocation Princeton University Press. 335 pp.Google ScholarPubMed
Fitton, M.G., Shaw, M.R. & Gauld, I.D. (1988) Pimpline ichneumon-flies. Hymenoptera, Ichneumonidae (Pimplinae). Handbook for the Identification of British Insects 7, 1110.Google Scholar
Kalule, T. & Wright, D.J. (2002) Tritrophic interactions between cabbage cultivars with different resistance and fertilizer levels, cruciferous aphids and parasitoids under field conditions. Bulletin of Entomological Research 92, 6169.CrossRefGoogle ScholarPubMed
Maher, N., Toulouse, M.E., Jolivet, J. & Thiéry, D. (2000) Oviposition preference of the European grape vine moth, Lobesia botrana (Lepidoptera: Tortricidae) for host and nonhost plants present in Bordeaux area. IOBC/wprs Bulletin 23 4 131134.Google Scholar
Maher, N. (2002) Oviposition site selection by Lobesia botrana (Lepidoptera: Tortricidae): influence of non-volatile chemical cues from host plants fruits (in French) 125 Thèse de Doctorat en Sciences Biologiques et Médicales, Université de Bordeaux.Google Scholar
Maher, N. & Thiéry, D. (2004) A bioassay to evaluate the activity of chemical stimuli from grape berries on the oviposition of Lobesia botrana (Lepidoptera: Tortricidae). Bulletin of Entomological Research 94, 2733.CrossRefGoogle ScholarPubMed
Marchesini, E. & Della, L.D. (1994) Observations on natural enemies of Lobesia botrana (Den. & Schiff.) (Lepidoptera, Tortricidae) in Venetian vineyards. Bolletino di Zoologica Agrariae di Bachicoltura 26, 201230.Google Scholar
Perez, I., Saenz, de, Cabezon, F.J., Marco, V. (2000) Evaluation of natural parasitism on hibernating pupae of the European grape moth (Lobesia botrana Den. & Schiff.) in vineyard of La Rioja. Boletin de Sanidad Vegetal, Plagas 26, 715721.Google Scholar
Price, P.W., Bouton, C.E., Gross, P., McPheron, B.A., Thompson, J.N. & Weis, A.E. (1980) Interactions among three trophic levels: influence of plant interactions between insect herbivores and natural enemies. Annual Review of Ecology and Systematics 11, 4165.CrossRefGoogle Scholar
Remund, U. (1990) Essais avec les parasitoïdes des vers de la grappe. IOBC/wprs Bulletin 13 7 6667.Google Scholar
Roehrich, R. & Boller, E. (1991) Tortricids in vineyards. 507514Van der Gesst, L.P.S., Evenhuis, H.H., (Eds) Tortricid pests, their biology natural enemies and control. Amsterdam, Elsevier.Google Scholar
Savopoulou-Soultani, M. & Tzanakakis, M.E. (1988) Development of Lobesia botrana (Lepidoptera: Tortricidae) on grapes and apples infected with the fungus Botrytis cinerea. Environmental Entomology 17, 16.CrossRefGoogle Scholar
Schmid, A. (1978) Vers de la grappe 1978 en Suisse Romande. Rapport pour la réunion OILBLutte intégrée en ViticultureBeaune, février 1978.Google Scholar
Steidle, J.L.M. & van Loon, J.J.A. (2003) Dietary specialization and infochemical cue in carnivorous arthropods: testing a concept. Entomologia Experimentalis et Applicata 108, 133148.CrossRefGoogle Scholar
Takasu, K. & Lewis, W.J. (1995) Importance of adult food sources to host searching of the larval parasitoid Microplitis croceipes. Biological Control 5, 2530.CrossRefGoogle Scholar
Thiéry, D. & Moreau, J. (2005) Relative performance of European grapevine moth (Lobesia botrana) on grapes and other hosts. Oecologia, in press.CrossRefGoogle ScholarPubMed
Thiéry, D., Xuéreb, A., Villemant, C., Sentenac, G., Delbac, L. & Kuntzman, P. (2001) Larval parasitoids of vineyard tortricids: a brief overview from 3 French vine growing areas. IOBC/wprs Bulletin 24, 13142.Google Scholar
Turlings, T.C.J. & Fritzsche, M.E. (1999) Attraction of parasitic wasps by caterpillar-damaged plants. pp. 2132Chadwick, D.J., Goodee, J.A. (Eds) Insect–plant interactions and induced plant defence Chichester, Wiley & Sons.Google Scholar
Van den, Assem J. (1971) Some experiments on the sex-ratio and sex regulation in the pteromalid Lariophagus distinguendus. Netherlands Journal of Zoology 24, 253402.Google Scholar
Vet, L.E.M., Dicke, M. (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annual Review of Entomology 37, 141172.CrossRefGoogle Scholar
Wäckers, F.L. (1994) The effect of food deprivation on the innate visual and olfactory preferences in the parasitoid Cotesia rubecula. Journal of Insect Physiology 40, 641649.CrossRefGoogle Scholar
Xuéreb, A., Mautrait, E., Laguerre, M., Thiéry, D. (2003) Une pyrale polyphage pouvant causer des dégâts au vignoble. Phytoma 559, 3032.Google Scholar