Published online by Cambridge University Press: 27 March 2009
We investigate the degree of between-population genetic differentiation in the Mediterranean field cricket Gryllus bimaculatus, as well as the possible causes of such differentiation. Using cytochrome b mtDNA sequences, we estimate genetic variation in G. bimaculatus from seven South African and two Mediterranean populations. Within-population genetic variation in Europe (two haplotypes, one unique to a single individual) suggest low effective population size and strong bottlenecks with associated founder effects, probably due to cold winter environments in Europe that limit reproduction to a short part of the summer. The likely cause for this is the daily maxima in winter temperatures that fall below the critical level of 16°C (enabling normal calling and courtship behaviour) in Mediterranean Europe, whereas the equivalent temperatures in southern Africa are above this limit and enable reproduction over a large part of the year. European genetic variants were either shared with Africa or closely related to African haplotypes. For survival, European populations are probably dependent on immigration from other areas, including Africa. South African populations have low but measurable gene flow with Europe and show significant between-population genetic differentiation (30 haplotypes). Isolation-by-distance is not sufficient to explain the degree of between-population genetic differences observed, and a large degree of dispersal is also required in order to account for the observed patterns. Differences in morphology and calling behaviour among these populations are underlied by these genetic differences.