Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-03T15:39:02.189Z Has data issue: false hasContentIssue false

Discrimination of Cricotopus species (Diptera: Chironomidae) by DNA barcoding

Published online by Cambridge University Press:  01 July 2008

C.S. Sinclair*
Affiliation:
Department of Biological Sciences, Towson University, Towson, Maryland, USA 21252
S.E. Gresens
Affiliation:
Department of Biological Sciences, Towson University, Towson, Maryland, USA 21252
*
*Author for correspondence Fax: 1 (410) 704-2405 E-mail: [email protected]

Abstract

Chironomids (Diptera) typically comprise the most abundant group of macroinvertebrates collected in water quality surveys. Species in the genus Cricotopus display a wide range of tolerance for manmade pollutants, making them excellent bioindicators. Unfortunately, the usefulness of Cricotopus is overshadowed by the difficulty of accurately identifying larvae using current morphological keys. Molecular approaches are now being used for identification and taxonomic resolution in many animal taxa. In this study, a sequence-based approach for the mitochondrial gene, cytochrome oxidase I (COI), was developed to facilitate identification of Cricotopus species collected from Baltimore area streams. Using unique COI sequence variations, we developed profiles for seven described Cricotopus sp., four described Orthocladius sp., one described Paratrichocladius sp. and one putative species of Cricotopus. In addition to providing an accurate method for identification of Cricotopus, this method will make a useful contribution to the development of keys for Nearctic Cricotopus.

Type
Research Paper
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ball, S.L., Hebert, P.D.N., Burian, S.K. & Webb, J.M. (2005) Biological identifications of mayflies (Ephemeroptera) using DNA barcodes. Journal of the North American Benthological Society 24, 508524.CrossRefGoogle Scholar
Carew, M.E., Pettigrove, V. & Hoffmann, A.A. (2003) Identifying chironomids (Diptera: Chironomidae) for biological monitoring with PCR-RFLP. Bulletin of Entomological Research 93, 483490.CrossRefGoogle ScholarPubMed
Carew, M.E., Pettigrove, V. & Hoffmann, A.A. (2005) The utility of DNA markers in classical taxonomy: Using cytochrome oxidase I markers to differentiate Australian Cladopelma (Diptera: Chironomonidae) midges. Annals of the Entomological Society of America 98, 587594.CrossRefGoogle Scholar
Carew, M.E., Pettigrove, V., Cox, R.L. & Hoffmann, A.A. (2007) DNA identification of urban Tanytarsini chironomids (Diptera: Chironomidae). Journal of the North American Benthological Society 26, 587600.CrossRefGoogle Scholar
Coffman, W.P. (1995) Conclusions. pp. 436447 in Armitage, P., Cranston, P.S. & Pinder, L.C.V. (Eds) The Chironomidae: The Ecology and Biology of Non-biting Midges. London, Chapman & Hall.CrossRefGoogle Scholar
Coffman, W.P. & Ferrington, L.C. Jr (1984) Chironomidae. p. 551 in Merritt, R.W. & Cummings, K.W. (Eds) An Introduction to the Aquatic Insects of North America. 2nd edn. Iowa, Kendall/Hunt Publishing Co.Google Scholar
Cranston, P.S. (1995) Introduction. pp. 15 in Armitage, P., Cranston, P.S. & Pinder, L.C.V. (Eds) The Chironomidae: The Ecology and Biology of Non-biting Midges. London, Chapman & Hall.Google Scholar
Diggins, T.P. (2000) Cluster analysis of the Chironomidae of the polluted Buffalo River, New York, USA. Verhandlungen der Internationalen Vereinigung fur Theoretische und Angewandte Limnologie 27, 23672373.Google Scholar
Ekrem, T. & Willassen, E. (2004) Exploring Tanytarsini relationships (Diptera: Chironomidae) using mitochondrial COII gene sequences. Insect Systematics & Evolution 35, 263276.CrossRefGoogle Scholar
Ekrem, T., Willassen, E. & Stur, E. (2007) A comprehensive DNA sequence library is essential for identification with DNA barcodes. Molecular Phylogenetics and Evolution 43, 530542.CrossRefGoogle ScholarPubMed
Epler, J.H. (2001) Identification manual for the larval Chironomidae (Diptera) of North and South Carolina. North Carolina Department of Environmental and Natural Resources; Division of Water Quality, Special Publication SJ2001-SP13.Google Scholar
Ferrington, L.C. Jr, Blackwood, M., Wright, C.A., Crisp, N.H., Kavanaugh, J.L. & Schmidt, F.J. (1991) A protocol for using surface-floating pupal exuviae of Chironomidae for rapid bioassessment of changing water quality. pp. 181190 in Peters, N.E. & Walling, D.E. (Eds) Sediment and Stream Water Quality in a Changing Environment: Trends and Explanation. IAHS Publication no. 203.Google Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294299.Google ScholarPubMed
Gresens, S.E., Belt, K.T., Tang, J.A., Gwinn, D.C. & Banks, P.A. (2007) Temporal and spatial responses of Chironomidae (Diptera) and other benthic invertebrates to urban stormwater runoff. Hydrobiologia 575, 173190.CrossRefGoogle Scholar
Guryev, V., Makarevitch, I., Blinov, A. & Martin, J. (2001) Phylogeny of the genus Chironomus (Diptera) inferred from DNA sequences of mitochondrial Cytochrome b and Cytochrome oxidase I. Molecular Phylogenetics and Evolution 19, 921.CrossRefGoogle ScholarPubMed
Hajibabaei, M., Janzen, D.H., Burns, J.M., Hallwachs, W. & Hebert, P.D.N. (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Science 103, 968977.CrossRefGoogle ScholarPubMed
Hebert, P.D.N., Cywinska, A., Ball, S.L. & deWaard, J.R. (2003a) Biological identification through DNA barcodes. Proceedings of the Royal Society of London, Series B 270, 313321.CrossRefGoogle ScholarPubMed
Hebert, P.D.N., Ratnasingham, S. & deWaard, J.R. (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London, Series B: Biological Sciences 270, S96S99.CrossRefGoogle ScholarPubMed
Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H. & Hallwachs, W. (2004a) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Science 101, 1481214817.CrossRefGoogle ScholarPubMed
Hebert, P.D.N., Stoeckle, M.Y., Zemlak, T.S. & Francis, C.M. (2004b) Identification of birds through DNA barcodes. Public Library of Science, Biology 2, 16571663.Google ScholarPubMed
Heino, J., Muotka, T., Paavola, R. & Paasivirta, L. (2003) Among-taxon congruence in biodiversity patterns: can stream insect diversity be predicted using single taxonomic groups? Canadian Journal of Fisheries and Aquatic Sciences 60, 10391049.CrossRefGoogle Scholar
Helson, J.E., Williams, D.D. & Turner, D. (2006) Larval chironomid community organization in four tropical rivers: human impacts and longitudinal zonation. Hydrobiologia 559, 413431.CrossRefGoogle Scholar
Hogg, I.D. & Hebert, P.D.N. (2004) Biological identification of springtails (Hexapoda: Collembola) from the Canadian Arctic, using mitochondrial DNA barcodes. Canadian Journal of Zoology 82, 749754.CrossRefGoogle Scholar
Johnson, R.K., Wiederholm, T. & Rosenberg, D.M. (1993) Freshwater biomonitoring using individual organisms, populations, and species assemblages of benthic macroinvertebrates. pp. 8288 in Rosenberg, D.M. & Resh, V.H. (Eds) Freshwater Biomonitoring and Benthic Macroinvertebrates. New York, Chapman & Hall.Google Scholar
Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111120.CrossRefGoogle ScholarPubMed
Langton, P.H. & Visser, H. (2003) Chironomid exuviae. A key to pupal exuviae of the West Palaearctic Region. World Biodiversity Database, CD-ROM Series. Expert Center for Taxonomic Identification, University of Amsterdam.Google Scholar
Lee, M.S.Y. (2004) The molecularisation of taxonomy. Invertebrate Systematics 18, 16.CrossRefGoogle Scholar
Lenat, D.R. (1993) A biotic index for the southeastern United States: derivation and list of tolerance values, with criteria for assigning water-quality ratings. Journal of the North American Benthological Society 12, 279290.CrossRefGoogle Scholar
Lenat, D.R. & Resh, V.H. (2001) Taxonomy & Stream Ecology. The benefits of genus and species-level identification. Journal of the North American Benthological Society 20, 287298.CrossRefGoogle Scholar
Meier, R., Shiyang, K., Vaidya, G. & Ng, P.K.L. (2006) DNA barcoding and taxonomy in diptera: A tale of high intraspecific variability and low identification success. Systematic Biology 55, 715728.CrossRefGoogle ScholarPubMed
Monaghan, M.T., Balke, M., Gregory, T.R. & Vogler, A.P. (2005) DNA-based species delineation in tropical beetles using mitochondrial and nuclear markers. Philosophical Transactions of the Royal Society of London, Series B 360, 19251933.CrossRefGoogle ScholarPubMed
New, T.R. (1996) Taxonomic focus and quality control in insect surveys for biodiversity conservation. Australian Journal of Entomology 35, 97106.CrossRefGoogle Scholar
Pfenninger, M., Nowak, C., Kley, C., Steinke, D. & Streit, B. (2007) Utility of DNA taxonomy and barcoding for the inference of larval community structure in morphologically cryptic Chironomus (Diptera) species. Molecular Ecology 16, 19571968.CrossRefGoogle ScholarPubMed
Pinder, L.C.V. (1986) Biology of freshwater Chironomidae. pp. 123 in Mittler, T.E., Radovsky, F.J. & Rash, V.H. (Eds) Annual Review of Entomology, Vol. 31. Palo Alto, California, Annual Reviews, Inc.Google Scholar
Rabeni, C.F. & Wang, N. (2001) Bioassessment of streams using macroinvertebrates: Are the chironomidae necessary? Environmental Monitoring and Assessment 71, 177185.CrossRefGoogle ScholarPubMed
Sæther, O.A. (1979) Chironomid communities as water quality indicators. Holarctic Ecology 2, 6574.Google Scholar
Savolainen, V., Cowan, R.S., Vogler, A.P., Roderick, G.K. & Lane, R. (2005) Towards writing the encyclopedia of life: an introduction to DNA barcoding. Philosophical Transactions of the Royal Society, Series B 360, 18051811.CrossRefGoogle Scholar
Sharley, D.J., Pettigrew, V. & Parsons, Y.V. (2004) Molecular identification of Chironomus spp. (Diptera) for biomonitoring of aquatic ecosystems. Australian Journal of Entomology 43, 359365.CrossRefGoogle Scholar
Shearer, T.L. & Coffroth, M.A. (2007) Barcoding corals: limited by interspecific divergence, not intraspecific variation. Molecular Ecology Notes 8, 247255.CrossRefGoogle Scholar
Simpson, K.W., Bode, R.W. & Albu, P. (1983) Keys for the genus Cricotopus adapted from ‘Revision der Gattung Cricotopus van der Wulp und ihrer Verwandten (Diptera: Chironomidae)’ by Hirvenoja. Bulletin of the New York State Museum 450, 1133.Google Scholar
Smith, M.A., Fisher, B.L. & Hebert, P.D.N. (2005) DNA barcoding for effective diversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philosophical Transactions of the Royal Society of London, Series B 360, 18251834.CrossRefGoogle Scholar
Smith, M.A., Woodley, N.E., Janzen, D.H., Hallwachs, W. & Hebert, P.D.N. (2006) DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proceedings of the National Academy of Science 103, 36573662.CrossRefGoogle ScholarPubMed
Soponis, A.R. (1977) A revision of the Nearctic species of Orthocladius (Orthocladius) van der Wulp (Diptera: Chironomidae). Memoirs of the Entomological Society of Canada 102, 1187.CrossRefGoogle Scholar
Stribling, J.B., Moulton, S.R. & Lester, G.T. (2003) Determining the quality of taxonomic data. Journal of the North American Benthological Society 22, 621631.CrossRefGoogle Scholar
Swofford, D.L. (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10. Sunderland, Massachusetts, Sinauer Associates.Google Scholar
Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle ScholarPubMed
Waite, I.R., Herlihy, A.T., Larsen, D.P., Urquhart, N.S. & Klemm, D.J. (2004) The effects of macroinvertebrate taxonomic resolution in large landscape bioassessments: an example from the Mid-Atlantic Highlands, USA. Freshwater Biology 49, 474489.CrossRefGoogle Scholar
Warwick, W.F. (1989) Morphological deformities in larvae of Procladius Skuse (Diptera: Chironomidae) and their biomonitoring potential. Canadian Journal of Fisheries and Aquatic Science 46, 12551270.CrossRefGoogle Scholar
Wiederholm, T. (Ed.) (1986) Chironomidae of the holoarctic region–keys and diagnoses. Part 2. Pupae. Entomologica Scandinavica Supplement 28, 1482.Google Scholar
Wiemers, M. & Fiedler, K. (2007) Does the DNA barcoding gap exist? – a case study in blue butterflies (Lepidoptera: Lycaenidae). Frontiers in Zoology 4, 8.CrossRefGoogle ScholarPubMed
Wilson, R.S. & Bright, P.L. (1973) The use of chironomid pupal exuviae for characterizing streams. Freshwater Biology 3, 283302.CrossRefGoogle Scholar
Witt, J.D.S., Threloff, D. & Hebert, P.D.N. (2006) DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Molecular Ecology 15, 30733082.CrossRefGoogle Scholar
Wright, C.A., Ferrington, L.C. Jr & Crisp, N.H. (1996) Analysis of chlordane-impacted streams using chironomid pupal exuviae (Diptera: Chironomidae). Hydrobiologia 318, 6977.CrossRefGoogle Scholar
Zhou, X., Kjer, K.M. & Morse, J.C. (2007) Associating larvae and adults of Chinese Hydropsychidae caddisflies (Insecta: Trichoptera) using DNA sequences. Journal of the North American Benthological Society 26, 719742.CrossRefGoogle Scholar