Hostname: page-component-599cfd5f84-z6fpd Total loading time: 0 Render date: 2025-01-07T05:57:03.969Z Has data issue: false hasContentIssue false

Dichroplus vittatus (Orthoptera: Acrididae) follows the converse to Bergmann's rule although male morphological variability increases with latitude

Published online by Cambridge University Press:  14 February 2007

C.J. Bidau*
Affiliation:
Laboratório de Biologia e Controle da Esquistossomose, Departamento de Medicina Tropical, FIOCRUZ, Rio de Janeiro, Brazil
D.A. Martí
Affiliation:
Laboratorio de Genética Evolutiva, Universidad Nacional de Misiones, Posadas, CONICET, Argentina
*
*Fax:++55 21 2280 3740 E-mail: [email protected]

Abstract

Geographic body size variation was analysed in males and females of 19 populations of the South American grasshopper Dichroplus vittatus Bruner spanning 20 degrees of latitude and 2700 m of altitude. Using mean and maximum body length of each sex and factors obtained from principal components analyses of six morphometric linear characters it was shown that D. vittatus followed the converse to Bergmann's rule latitudinally but not altitudinally where no significant trends were observed. For males, variability of body size increased with latitude but not with altitude. Both types of trends were significantly correlated with mean annual temperature and minimum annual temperature (positive correlations), and two estimators of seasonality, the coefficients of variation of mean annual temperature (negative) and mean annual precipitation (positive). Some allometric relationships also showed geographic variation. It is suggested that the observed decrease in size with latitude together with the increase in morphological variability is a consequence of a number of factors: the shortening of the growing season southwards; the increasing seasonality and climatic unpredictability; and the fact that the species exhibits protandry which contributes to smaller and more variable size in males and smaller but more constant body size in females.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, C.-H. & Tateishi, R. (1994a) Development of a global 30-minute grid potential evapotranspiration data set. Journal of the Japan Society of Photogrammetry and Remote Sensing 33, 1221.CrossRefGoogle Scholar
Ahn, C.-H. & Tateishi, R. (1994b) Estimation of potential evapotranspiration for global data sets. pp. 586593 in Proceedings of the ISPRS Commission IV Symposium: Mapping and Geographic Information Systems 30/4, 31 May–3 June, Athens, Georgia, USA.Google Scholar
Andersson, M. (1994) Sexual selection. 624 pp. Princeton, New Jersey, Princeton University Press.CrossRefGoogle Scholar
Angilletta, M.J. Jr. & Dunham, A.E. (2003) The temperature-size rule in ectotherms: simple evolutionary explanations may not be general. American Naturalist 162, 332342.CrossRefGoogle ScholarPubMed
Arnett, A.E. & Gotelli, N.J. (1999) Bergmann's rule in the ant lion Myrmeleon immaculatus DeGeer (Neuroptera: Myrmeleontidae): geographic variation in body size and heterozygosity. Journal of Biogeography 26, 275283.CrossRefGoogle Scholar
Ashton, K.G. (2001a) Are ecological and evolutionary rules being dismissed prematurely? Diversity and Distributions 7, 289295.CrossRefGoogle Scholar
Ashton, K.G. (2001b) Body size variation among mainland populations of the western rattlesnake (Crotalus viridis). Evolution 58, 25232533.Google Scholar
Ashton, K.G. (2002a) Do amphibians follow Bergmann's rule? Canadian Journal of Zoology 80, 708716.CrossRefGoogle Scholar
Ashton, K.G. (2002b) Patterns of within-species body size variation of birds: strong evidence for Bergmann's rule. Global Ecology and Biogeography 11, 505523.CrossRefGoogle Scholar
Ashton, K.G. & Feldman, C.R. (2003) Bergmann's rule in nonavian reptiles: turtles follow it, lizards and snakes reverse it. Evolution 57, 11511163.Google Scholar
Ashton, K.G., Tracy, M.C. & de Queiroz, A. (2000) Is Bergmann's rule valid for mammals? American Naturalist 156, 390415.CrossRefGoogle ScholarPubMed
Atkinson, D. (1994) Temperature and organism size – a biological rule for ectotherms? Advances in Ecological Research 25, 158.CrossRefGoogle Scholar
Atkinson, D. & Sibly, R.M. (1997) Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends in Ecology and Evolution 12, 235239.CrossRefGoogle ScholarPubMed
Belk, M.C. & Houston, D.D. (2002) Bergmann′s rule in ectotherms: a test using freshwater fishes. American Naturalist 160, 803808.CrossRefGoogle ScholarPubMed
Bergmann, C. (1847) Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Gottinger studien 3 (1), 595708.Google Scholar
Bidau, C.J. & Martí, D.A. (2000) Meiosis and the Neo-XY system of Dichroplus vittatus (Melanoplinae, Acrididae): a comparison between sexes. Genetica 110, 185194.CrossRefGoogle ScholarPubMed
Bidau, C.J. & Martí, D.A. (2002) Geographic distribution of Robertsonian fusions in Dichroplus pratensis (Melanoplinae, Acrididae): the central–marginal hypothesis reanalysed. Cytogenetic and Genome Research 96, 6674.CrossRefGoogle ScholarPubMed
Bidau, C.J. & Martí, D.A. (2005) Variability along a latitudinal gradient in the chiasma frequency and morphological characters of Dichroplus pratensis (Orthoptera: Acrididae). European Journal of Entomology 102, 112.CrossRefGoogle Scholar
Bidau, C.J. & Martí, D.A. (2006) Clinal variation of body size in Dichroplus pratensis (Orthoptera: Acrididae): inversion of Bergmann's and Rensch's rules. Annals of the Entomological Society of America 97, in press.Google Scholar
Blackburn, T.M., Gaston, K.J. & Loder, N. (1999) Geographic gradients in body size: a clarification of Bergmann's rule. Diversity and Distributions 5, 165174.CrossRefGoogle Scholar
Blanckenhorn, W.U. & Demont, M. (2004) Bergmann and converse Bergmann latitudinal clines in arthropods: two ends of a continuum? Integrative Comparative Biology 44, 413424.CrossRefGoogle ScholarPubMed
Blanckenhorn, W.U. & Fairbairn, D.J. (1995) Life history adaptation along a latitudinal cline in water striders. Journal of Evolutionary Biology 8, 2141.CrossRefGoogle Scholar
Brennan, J.M. & Fairbairn, D.J. (1995) Clinal variation in morphology among eastern populations of the waterstrider, Aquarius remigis Say (Hemiptera, Gerridae). Biological Journal of the Linnean Society 54, 151171.Google Scholar
Brisola Marcondes, C., Leuch Lozovei, A., Falqueto, A., Brazil, R.P., Galati, E.A.B., Aguiar, G.M. & Souza, N.A. (1999) Influence of altitude, latitude and season of collection (Bergmann's rule) on the dimensions of Lutzomyia intermedia Lutz & Neiva, 1912 (Diptera, Psychodidae, Phlebotominae). Memorias do Instituto Oswaldo Cruz 94, 693700.CrossRefGoogle Scholar
Byers, J.E. (2000) Effects of body size and resource availability on dispersal in a native and a non-native estuarine snail. Journal of Experimental Marine Biology and Ecology 248, 133150.CrossRefGoogle Scholar
Campodónico, M.J. (1968) Biología comparada de tucuras del género Dichroplus (Orthoptera, Acrididae). Hoja Informativa del Instituto de Biología Vegetal del INTA 29.Google Scholar
Chown, S.L. & Gaston, K.J. (1999) Exploring links between physiology and ecology at macro scales: the role of respiratory metabolism in insects. Biological Reviews 74, 87120.Google Scholar
Chown, S.L. & Klok, C.J. (2003) Altitudinal body size clines: latitudinal effects associated with changing seasonality. Ecography 26, 445455.CrossRefGoogle Scholar
Cigliano, M.M. & Otte, D. (2003) Revision of the Dichroplus maculipennis species group (Orthoptera, Acridoidea, Melanoplinae). Transactions of the American Entomological Society 129, 133162.Google Scholar
Cruz, F.B., Fitzgerald, L.A., Espinoza, R.E. & Schulte, A. (2005) The importance of phylogenetic scale in tests of Bergmann's and Rapoport's rules: lessons from a clade of South American lizards. Journal of Evolutionary Biology 18, 15591574.CrossRefGoogle ScholarPubMed
Fischer, K. & Fiedler, K. (2002) Reaction norms for age and size at maturity in response to temperature: A test of the compound interest hypothesis. Evolutionary Ecology 16, 333349.CrossRefGoogle Scholar
Hausdorf, B. (2003) Latitudinal and altitudinal body size variation among north-west European land snail species. Global Ecology and Biogeography 12, 389394.CrossRefGoogle Scholar
Heinze, J., Foitzik, S., Fischer, B., Wanke, T. & Kipyatkov, V.E. (2003) The significance of latitudinal variation in body size in a holarctic ant, Leptothorax acervorum. Ecography 26, 349355.CrossRefGoogle Scholar
Honek, A. (1993) Intraspecific variation in body size in insects: a general relationship. Oikos 66, 483492.CrossRefGoogle Scholar
Huey, R.B., Gilchrist, G.W., Carlson, M.L., Berrigan, D. & Serra, L. (2000) Rapid evolution of a geographic cline in size in an introduced fly. Science 287, 308309.CrossRefGoogle Scholar
James, F.C. (1970) Geographic size variation in birds and its relation to climate. Ecology 51, 365390.CrossRefGoogle Scholar
Johansson, F. (2003) Latitudinal shifts in body size of Enallagma cyathigerum (Odonata). Journal of Biogeography 30, 2934.CrossRefGoogle Scholar
Körner, C. (2000) Why are there global gradients in species richness? Mountains may hold the answer. Trends in Ecology and Evolution 15, 513514.CrossRefGoogle Scholar
Laugen, A.T., Laurila, A., Räsänen, K. & Merilä, J. (2003) Latitudinal countergradient variation in the common frog (Rana temporaria) development rates – evidence for local adaptation. Journal of Evolutionary Biology 16, 9961005.CrossRefGoogle ScholarPubMed
Laugen, A.T., Laurila, A., Jönsson, K.I., Söderman, F. & Merilä, J. (2005) Do common frogs (Rana temporaria) follow Bergmann's rule? Evolutionary Ecology Research 7, 717731.Google Scholar
Leemans, L. & Cramer, W.P. (1991) The IIASA database for mean monthly values of temperature, precipitation, and cloudiness on a global terrestrial grid. Research Report RR-91-18. International Institute for Applied Systems Analysis, Laxenburg, Austria.Google Scholar
Litzgus, J.D., Durant, S.E. & Mousseau, T.A. (2004) Clinal variation in body and cell size in a widely distributed vertebrate ectotherm. Oecologia 140, 551558.CrossRefGoogle Scholar
Martí, D.A. (2002) Estudios sobre la meiosis masculina y femenina en especies argentinas de acrididos (Melanoplinae). PhD thesis, Universidad Nacional de Còrdoba, Argentina.Google Scholar
Masaki, S. (1967) Geographic variation and climatic adaptation in a field cricket (Orthoptera: Gryllidae). Evolution 21, 725741.CrossRefGoogle Scholar
Masaki, S. (1978) Seasonal and latitudinal adaptations in the life cycles of crickets. pp. 7290in Dingle, H. (Ed.) Evolution of insect migration and diapause. New York, Springer-Verlag.CrossRefGoogle Scholar
Mayr, E. (1956) Geographic character gradients and climatic adaptations. Evolution 10, 105108.CrossRefGoogle Scholar
Mayr, E. (1963) Animal species and evolution. 797 pp. Cambridge, Massachusetts, Harvard University Press.CrossRefGoogle Scholar
Medina, A.I., Martí, D.A. & Bidau, C.J. (2006) Subterranean rodents of the genus Ctenomys (Caviomorpha, Ctenomyidae) follow the converse to Bergmann′s rule. Journal of Biogeography, in press.Google Scholar
Meiri, S. & Dayan, T. (2003) On the validity of Bergmann's rule. Journal of Biogeography 30, 331351.CrossRefGoogle Scholar
Morbey, Y.E. & Ydenberg, R.C. (2001) Protandrous arrival timing to breeding areas: a review. Ecology Letters 4, 663673.Google Scholar
Mousseau, T.A. (1997) Ectotherms follow the converse to Bergmann's rule. Evolution 51, 630632.CrossRefGoogle ScholarPubMed
Ochocinska, D. & Taylor, J.R.E. (2003) Bergmann′s rule in shrews: geographic variation in body size in Palearctic Sorex species. Biological Journal of the Linnean Society 78, 365381.CrossRefGoogle Scholar
Peat, J., Darvill, B., Ellis, J. & Goulson, D. (2005) Effects of climate on intra- and interspecific size variation in bumble-bees. Functional Ecology 19, 145151.CrossRefGoogle Scholar
Ray, C. (1960) The application of Bergmann's and Allen's rules to the poikilotherms. Journal of Morphology 106, 85108.CrossRefGoogle Scholar
Rensch, B. (1938) Some problems of geographical variation and species formation. Proceedings of the Linnean Society of London 150, 275285.CrossRefGoogle Scholar
Rensch, B. (1959) Evolution above the species level. 419 pp. London, Methuen.CrossRefGoogle Scholar
Roff, D. (1980) Optimizing development time in a seasonal environment: The ‘ups and downs’ of clinal variation. Oecologia 45, 202208.CrossRefGoogle Scholar
Roy, K. & Martien, K.K. (2001) Latitudinal distribution of body size in north-eastern Pacific marine bivalves. Journal of Biogeography 28, 485493.CrossRefGoogle Scholar
Schäuble, C.S. (2004) Variation in body size and sexual dimorphism across geographical and environmental space in the frogs Limnodynastes tasmaniensis and L. peronii. Biological Journal of the Linnean Society 82, 3956.CrossRefGoogle Scholar
Smith, R.J., Hines, A., Richmond, S., Merrick, M., Drew, A. & Fargo, R. (2000) Altitudinal variation in body size and population density of Nicrophorus investigator (Coleoptera: Silphidae). Environmental Entomology 29, 290298.CrossRefGoogle Scholar
Trussell, G.C. (2000) Phenotypic clines, plasticity, and morphological trade-offs in an intertidal snail. Evolution 54, 151166.Google Scholar
Turk, S.Z. & Barrera, M. (1979) Acridios del NOA III. Estudio bio-ecológico sobre siete especies del género Dichroplus Stal (Orthoptera, Acrididae). Acta Zoológica Lilloana 35, 785805.Google Scholar