Hostname: page-component-f554764f5-c4bhq Total loading time: 0 Render date: 2025-04-16T06:51:13.572Z Has data issue: false hasContentIssue false

Development and survival of Plutella Xylostella in central Argentina: Estimating key parameters for local populations

Published online by Cambridge University Press:  02 April 2025

Paula San Pedro
Affiliation:
Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales (CREAN-IMBIV), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
Romina Fachinetti*
Affiliation:
Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales (CREAN-IMBIV), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
Efrain Ferreyra
Affiliation:
Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales (CREAN-IMBIV), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
Mariano Pablo Grilli
Affiliation:
Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales (CREAN-IMBIV), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina Cátedra de Bioestadística I y II, FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
*
Corresponding author: Romina Fachinetti; Email: [email protected]

Abstract

Diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), a globally distributed insect, is a major pest of crucifer crops due to its adaptability to diverse climates. In Argentina, its distribution spans three regions: a core area in the northeast and central-east where it persists year-round, a southwestern region with seasonal migrations, and an intermediate zone with variable year-round persistence. Across these areas, it is the primary pest of Brassica crops. In the central-east, the availability of year-round Brassicaceae crops and wild species indicates that seasonality is not linked to food scarcity. While studies have examined this relationship elsewhere, thermal thresholds vary among populations, and limited data on South American populations highlight the need for localised research. This study evaluated thermal thresholds for P. xylostella populations in central Argentina, focusing on temperature’s effects on fecundity, fertility, development, and survival. We found that temperatures outside the optimal range (15–23°C) significantly reduced survival, with no individuals surviving at 5 or 30°C. Linear and non-linear models accurately described the relationship between temperature and pest development. Using cumulative degree-days, we mapped potential P. xylostella generations across central Argentina. This research provides the first comprehensive analysis of P. xylostella thermal biology in temperate Argentina, emphasising temperature’s critical role in its development. The findings offer valuable insights for climate-specific pest management strategies and enhance understanding of insect population dynamics in agricultural ecosystems, contributing to more sustainable control practices.

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aghmad, TR (1988) Degree‐days requirements for predicting emergence and flight of the codling moth Cydia pomonella (L.)(Lep., Olethreutidae). Journal of Applied Entomology 106, 345349. doi: 10.1111/j.1439-0418.1988.tb00602.x.CrossRefGoogle Scholar
Altman, DG (1991) Analysis of survival times. In Altman, DG (ed.), Practical Statistics for Medical Research. London: Chapman & Hall, pp. 365394.Google Scholar
Annecke, D and Moran, V (1982) In Insects and Mites of Cultivated Plants in South Africa. Durban: Butterworths, .Google Scholar
Bahar, MH, Soroka, JJ, Grenkow, L and Dosdall, LM (2014) New threshold temperatures for the development of a North American diamondback moth (Lepidoptera: Plutellidae) population and its larval parasitoid, Diadegma insulare (Hymenoptera: Ichneumonidae). Environmental Entomology 43, 14431452. doi: 10.1603/EN14055.CrossRefGoogle ScholarPubMed
Bennett, S, Duarte, CM, Marbà, N and Wernberg, T (2019) Integrating within-species variation in thermal physiology into climate change ecology. Philosophical Transactions of the Royal Society B 374, . doi: 10.1098/rstb.2018.0550.CrossRefGoogle ScholarPubMed
Brière, JF, Pracos, P, Le Roux, AY and Pierre, JS (1999) A novel rate model of temperature-dependent development for arthropods. Environmental Entomology 28, 2229.Google Scholar
Briere, JF and Pracros, P (1998) Comparison of temperaturedependent growth models with the developmentof Lobesia botrana (Lepidoptera: Tortricidae). Environmental Entomology 27, 94101.CrossRefGoogle Scholar
Campos, WG, Schoereder, LH and DeSouza, OF (2006) Seasonality in neotropical populations of Plutella xylostella (Lepidoptera): Resource availability and migration. Population Ecology 48, 151158.Google Scholar
Castelo Branco, M and Gatehouse, AG (2001) A survey of insecticide susceptibility in Plutella xylostella (L.) (Lepidoptera: Yponomeutidae) in the Federal District, Brazil. Neotropical Entomology 30, 327332.CrossRefGoogle Scholar
Chen, B and Kang, L (2004) Variation in cold hardiness of Liriomyza huidobrensis (Diptera: Agromyzidae) along the latitudinal gradients. Environmental Entomology 33, 155164.Google Scholar
Colomer, JS, Castillo, J, Iriarte, L and Villegas, N (2010) Cultivo de colza bajo riego en Mendoza. Prefeder Programa Nacional de Bio-Energía. Junín, Mendoza, Argentina:INTA, Gráfica Cóndor, . https://inta.gob.ar/sites/default/files/script-tmp-cultivo_de_colza_bajo_riego_en_mendoza.pdfGoogle Scholar
Ecole, CC, Dos Anjos, N, Michereff Filho, M and Picanço, MC (1999) Determinación del número de estadios larvarios en Plutella xylostella (L.) (Lepidoptera: Yponomeutidae). Acta Scientiarum. Biological Sciences 21, 331335.Google Scholar
Espinoza-Gavilanez, R and Grilli, MP (2019) First record of the spatio-temporal variation of Plutella xylostella (Lepidoptera: Plutellidae) and its parasitoids complex in the horticultural area of Córdoba city in central Argentina. Biological Control 133, 18.Google Scholar
FAO (2024a). FAOSTAT – Worldwide production and yield of cabbage, cauliflower, broccoli and rape or colza seed [online]. Available at https://www.fao.org/faostat/en/#data/QCL (accessed 27 December 2024)Google Scholar
FAO (2024b). Crop information on cabbage. [online]. Available at https://www.fao.org/land-water/databases-and-software/crop-information/cabbage/en/ (Accessed 27 December 2024)Google Scholar
Furlong, MJ, Spafford, H, Ridland, PM, Endersby, NM, Edwards, OR, Baker, GJ, Keller, MA and Paull, CA (2008) Ecology of diamondback moth in Australian canola: Landscape perspectives and the implications for management. Australian Journal of Experimental Agriculture 48, 14941505.Google Scholar
Furlong, MJ, Wright, DJ and Dosdall, LM (2013) Diamondback moth ecology and management: Problems, progress and prospects. Annual Review of Entomology 58, 517541.Google ScholarPubMed
Garrad, R, Booth, DT and Furlong, MJ (2016) The effect of rearing temperature on development, body size, energetics and fecundity of the diamondback moth. Bulletin of Entomological Research 106, 175181.Google ScholarPubMed
Gaston, KJ (2009) Geographic range limits: Achieving synthesis. Proceedings of the Royal Society B: Biological Sciences 276(1661), 13951406.Google ScholarPubMed
Giobellina, B (2017) El cinturón verde de Córdoba: Hacia un plan integral para la preservación, recuperación y defensa del área periurbana de producción de alimentos/Beatriz Giobellina... [et al.] (Coordinadora Beatriz, G), Producción Cartográfica Nicolás Mari... [et al.]. 1aManfredi, Córdoba:Ediciones INTA.Google Scholar
Girard, FP, Bertolaccini, I, Arregui, C, Favaro, JC and Curis, MC (2012) Efecto de la temperatura y de la dieta sobre parámetros biológicos de la polilla de las coles (Lepidoptera, Plutellidae). Entomotrópica 27(3), 103109.Google Scholar
Golizadeh, A, Kamali, K, Fathipour, Y and Abbasipour, H (2007) Temperature‐dependent development of diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) on two brassicaceous host plants. Insect Science 14, 309316.Google Scholar
Golizadeh, A, Kamali, K, Fathipour, Y and Abbasipour, H (2009) Effect of temperature on life table parameters of Plutella xylostella (Lepidoptera: Plutellidae) on two brassicaceous host plants. Journal of Asia-Pacific Entomologist 12, 207212.Google Scholar
Gomi, T, Inudo, M and Yamada, D (2003) Local divergence in developmental traits within a trivoltine area of Hyphantria cunea Drury (Lepidoptera: Arctiidae). Entomological Science 6, 7175.Google Scholar
Grilli, M, Pecorari, M and Bruno, MA (2015) Dinámica de la polilla de las coles Plutella xylostella y su complejo de parasitoides en lotes hortícolas de la ciudad de Córdoba. Dardo, Marti, Diana, Ohashi, Mahia, Ayala, Elio, Castillo (eds.), Libro de Resúmenes IX Congreso de Entomología. Posadas, Misiones, Argentina: Libro de resúmenes IX Congreso de Entomología, .Google Scholar
Grilli, MP and Espinoza Gavilanez, R (2021) Brassica patch geometry and adjacent matrix: How small-scale changes in landscape can affect Plutella xylostella populations. International Journal of Pest Management 70, 519529.Google Scholar
Guo, S and Quin, Y (2010) Effects of temperature and humidity on emergence dynamics of Plutella xylostella (Lepidoptera: Plutellidae. Journal of Economic Entomology 103, 20282033.Google ScholarPubMed
Hallman, GJ and Denlinger, DL (1999) Introduction: Temperature sensitivity and integrated pest management, p. 1–5. In Hallman, GJ and Denlinger, DL (eds.), Temperature Sensitivity in Insects and Application in Integrated Pest Management. Boulder: Westview Press, .Google Scholar
He, L, Zhao, S, Ali, A, et al. (2021)Ambient humidity affects development, survival, and reproduction of the invasive fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), in China. Journal of Economic Entomology 114, 11451158. doi: 10.1093/jee/toab056.Google ScholarPubMed
Herms, DA (2004) Using degree-days and plant phenology to predict pest activity, p. 59-59. In Krischik, V, and Davidson, J (eds.), IPM of Midwest Landscapes. Minnesota Agricultural Experiment Station St Paul: University of Minnesota, .Google Scholar
Honék, A (1996) Geographical variation in thermal requirements for insect development. European Journal of Entomology 93, 303312.Google Scholar
Huffaker, CB (1944) Temperature relations of Anopheles. Annals of the Entomological Society of America 37, 127.Google Scholar
Isaaks, EH and Srivastava, RM (1989) An Introduction to Applied Geostatistics. Oxford University Press: Oxford, New York.Google Scholar
Jalalai, MA, Tirry, L, Arbab, A and De Clercq, P (2009) Temperature dependent development of the two-spotted ladybeetle, Adalia bipunctata, on the green peach aphid, Myzus persicae, and a factitious food under constant temperatures. Journal of Insect Science 10, .Google Scholar
Jaleel, W, Saeed, S, Naqqash, MN, et al. (2020) Effects of temperature on baseline susceptibility and stability of insecticide resistance against Plutella xylostella (Lepidoptera: Plutellidae) in the absence of selection pressure. Saudi Journal of Biological Sciences 27, 15. doi: 10.1016/j.sjbs.2019.03.004.Google ScholarPubMed
Jervis, MA and Copland, MJW (1996) The life cycle. In Insect Natural Enemies, Practical Approaches to Their Study and Evaluation. London: Chapman Hall, .Google Scholar
Kaplan, EL and Meier, P (1958) Nonparametric-estimation from incomplete observations. Journal of the American Statistical Association 53, 457481.Google Scholar
Khaliq, A, Attique, MNR and Sayyed, AH (2007) Evidence for resistance to pyrethroids and organophosphates in Plutella xylostella (Lepidoptera: Plutellidae) from Pakistan. Bulletin of Entomological Research 97, 191200. doi: 10.1017/S0007485307004877.CrossRefGoogle ScholarPubMed
Kobori, Y and Hanboosong, Y (2017) Effect of temperature on the development and reproduction of the sugarcane white leaf insect vector, Matsumuratettix hiroglyphicus (Matsumura) (Hemiptera: Cicadellidae). Journal of Asia-Pacific Entomology 20, 281284.Google Scholar
Kroschel, J, Sporleder, MH, Tonnang, HEZ, Juarez, H, Carhuapoma, P, Gonzales, JC and Simon, R (2013) Predicting climate-change-caused changes in global temperature on potato tuber moth Phthorimaea operculella (Zeller) distribution and abundance using phenology modeling and GIS mapping. Agriculture and Forest Meteorology 15, 228241.CrossRefGoogle Scholar
Lamb, R (1989) Entomology of oilseed Brassica crops. Annual Review of Entomology 34, 211229.Google Scholar
Lee, JH and Elliott, NC (1998) Comparison of developmental responses to temperature in Aphelinus asycyhis (Walker) from two different geographic regions. Southwest Entomologist 23, 7782.Google Scholar
Lietti, M, Grilli, MP, Fernandez, C and Espinza Gavilanez, R (2020) Plutella xylostella (L.)(Lepidoptera: Plutellidae): BIOECOLOGÍA Y CONTROL BIOLÓGICO. Control biológico de plagas en horticultura : Experiencias argentinas de las últimas tres décadas. INTA Ediciones. Instituto de Microbiología y Zoología Agrícola – IMYZA – CICVyA – CNIA, pp. 561.Google Scholar
Lim, GS (1986) Biological control of diamondback moth, 159–171. In: Diamondback moth Management: Proceedings of the First International Workshop. Taiwan, Asian Vegetable Research and Development Center.Google Scholar
Liu, SS, Chen, FZ and Zalucki, MP (2002) Development and survival of the diamondback moth (Lepidoptera: Plutellidae) at constant and alternating temperatures. Environmental Entomology 31, 221231.CrossRefGoogle Scholar
Logan, JA, Wollkind, DJ, Hoyt, SC and Tanigoshi, LK (1976) An analytic model for description of temperature dependent rate phenomena in arthropods. Environmental Entomology 5, 11331140. doi: 10.1093/ee/5.6.1133.Google Scholar
Marchioro, CA and Foerster, LA (2011) Development and survival of the Diamondback Moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae) as a function of temperature: Effect on the number of generations in tropical and subtropical regions. Neotropical Entomology 40, 533541.Google ScholarPubMed
Marchioro, CA and Foerster, LA (2016) Biotic factors are more important than abiotic factors in regulating the abundance of Plutella xylostella L., in Southern Brazil. Revista Brasileira Do Entomologia 60(4), 328333.Google Scholar
Marco, V (2001) Modelización de la tasa de desarrollo de insectos en función de la temperatura. Aplicación al manejo integrado de plagas mediante el método de grados-día. Boletín N°28, Sociedad Entomológica Aragonesa, España 7(28), 147150.Google Scholar
Mohandass, S and Zalucki, MP (2004) DBM development: Are we measuring the right temperatures?. In The Management of the Diamondback Moth and Other Crucifer Pests: Proceedings of the Fourth International Workshop. Victoria, The Regional Institute, .Google Scholar
Montero, G, Vignaroli, L and Lietti, M (2007b) La “polilla de las coles” principal plaga de la colza en el sur de Santa Fe. Revista Agromensajes de la Facultad 23, 3444.Google Scholar
Mustata, G (1992) Role of parasitoid complex in limiting the population of diamondback moth in Moldavia, Romania. Proceedings of the Second International Workshop Shanhua, Taiwan, 203212.Google Scholar
Nechols, JR, Tauber, MJ, Tauber, CA and Masaki, S (1999) Adaptations to hazardous seasonal conditions: Dormancy, migration, and polyphenism, pp. 159–200. In Huffaker, CB and Gutierrez, AP (eds.), Ecological Entomology. Wiley: New York, pp. .Google Scholar
Ngowi, BV, Tonnang, HE, Mwangi, EM, Johansson, T, Ambale, J, Ndegwa, PN and Subramanian, S (2017) Temperature-dependent phenology of Plutella xylostella (Lepidoptera: Plutellidae): Simulation and visualization of current and future distributions along the Eastern Afromontane. PLoS One 12(3), . doi: 10.1371/journal.pone.0173590.Google ScholarPubMed
Oliveira, AC, Siqueira, HA, Oliveira, JV, Silva, JE and Michereff Filho, M (2011) Resistance of Brazilian diamondback moth populations to insecticides. Scientia Agricola 68, 154159.Google Scholar
Pan, QJ, Chen, L, Lin, XL, Ridsdill-Smith, TJ and Liu, TX (2014) Geographical variations in life histories of Plutella xylostella in China. Journal of Pest Science 87, 659670. doi: 10.1007/s10340-014-0608-0.Google Scholar
Pastrana, JA (2004) In Los Lepidópteros Argentinos. San Miguel de Tucumán, Argentina: Sociedad Entomológica Argentina Ediciones, .Google Scholar
Pastrana, JA, Di Iorio, OR, Navarro, F, Chalup, A and Villagrán, ME (2004) Lepidoptera. En: Cordo, HA, Logarzo, G, Braun, K and Di Iorio, O (Directores, Catálogo de Insectos Fitófagos de la Argentina Y Sus Plantas Asociadas. Buenos Aires, Argentina: Sociedad Entomológica Argentina Ediciones, .Google Scholar
Pérez, CJ, Alvarado, P, Narváez, C, Miranda, F, Hernández, L, Vanegas, H, Hruska, A and Shelton, AM (2000) Assessment of insecticide resistance in five insect pests attacking field and vegetable crops in Nicaragua. Journal of Economic Entomology 93, 17791787. doi: 10.1603/0022-0493-93.6.1779.CrossRefGoogle ScholarPubMed
Pruess, KP (1983) Day -Degree methos for pest management. Environmental Entomology 12, 613619.Google Scholar
R Core Team (2023) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, AustriaGoogle Scholar
Rebaudo, F and Rabhi, VB (2018) Modeling temperature-dependent development rate and phenology in insects: Review of major developments, challenges, and future directions. Entomologia Experimentalis Et Applicatta 166, 86078617.Google Scholar
Ríos de Saluso, MLD, Muñoz, JDD, Martinelli, AH and Galussi, AA (1989) Insectos fitófagos presentes en la flora de la EEA Paraná y sus alrededores. INTA, EEA Paraná, Serie de Relevamiento de Recursos Naturales 6, 130.Google Scholar
Roy, M, Brodeur, J and Cloutier, C (2002) Relationship between temperature and developmental rate of Stethorus punctillum (Coleoptera: Coccinellidae) and its prey Tetranychus mcdanieli (Acarina: Tetranychidae). Environmental Entomology 31, 177187.CrossRefGoogle Scholar
Roy, M, Brodeur, J and Cloutier, C (2003) Effect of temperature on intrinsic rates of natural increase (rm) of a coccinellid and its spider mite prey. Biocontrol 48, 5772.CrossRefGoogle Scholar
Saeed, S, Jaleel, W, Naqqash, MN, Saeed, Q, Zaka, SM, Sarwar, ZM, Ishtiaq, M, Qayyum, MA, Sial, MU and Batool, M (2018) Fitness parameters of Plutella xylostella (L.) (Lepidoptera; Plutellidae) at four constant temperatures by using age-stage, two-sex life tables. Saudi Journal of Biological Science 26, 16611667.Google ScholarPubMed
Sarnthoy, O, Keinmeesuke, P, Sinchaisri, N and Nakasuji, F (1989) Development and reproductive rate of diamondback moth Plutella xylostella from Thailand. Applied Entomology and Zoology 24, 202208.Google Scholar
Sayyed, AH and Wright, DJ (2006) Genetics and evidence for an esterase-associated mechanism of resistance to indoxacarb in a field population of diamondback moth (Lepidoptera: Plutellidae). Pest Management Science 62, 10451051. doi: 10.1002/ps.1270.Google Scholar
Schellhorn, NA, Bellati, J, Paull, CA and Maratos, L (2008) Parasitoid and moth movement from refuge to crop. Basic Applied Ecology 9, 691700. doi: 10.1016/j.Baae.2007.12.010.CrossRefGoogle Scholar
Servicio Meteorógico Nacional (1992) Estadísticas Climatológicas 1981–1990, Fuerza Aérea Argentina (ed.), Argentina: Buenos Aires, .Google Scholar
Shakeel, M, Farooq, M, Nasim, W, Akram, W, Khan, A, Jaleel, W, Zhu, X, Yin, H, Li, S, Fahad, S, Hussain, S, Chauhan, BS and Jin, F (2017) Environment polluting conventional chemical control compared to an environmentally friendly IPM approach for control of diamondback moth, Plutella xylostella (L.), in China: A review. Environmental Science and Pollution Research 24, 1453714550. doi: 10.1007/s11356-017-8996-3.Google Scholar
Shelton, AM, Sances, FV, Hawley, J, Tang, JD, Boune, M, Jungers, D, Collins, HL and Farias, J (2000) Assessment of insecticide resistance after the outbreak of diamondback moth (Lepidoptera: Plutellidae) in California in 1997. Journal of Economic Entomology 93, 931936.CrossRefGoogle ScholarPubMed
Shi, SS, Cui, J and Zang, LS (2014) Development, survival, and reproduction of megacopta cribraria (Heteroptera: Plataspidae) at different constant temperatures. Journal of Economic Entomology 107, 20612066.CrossRefGoogle ScholarPubMed
Shirai, Y (2000) Temperature tolerance of the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae) in tropical and temperate regions of Asia. Bulletin of Entomological Research 90, 357364.Google ScholarPubMed
Southwood, TRE and Henderson, PA (2000) Ecological Methods. 3rd, United Kingdom: Blackwell Science, Oxford, .Google Scholar
StatSoft, Inc. (2011) STATISTICA (data analysis software system), version 10. www.statsoft.comGoogle Scholar
Steinbach, D, Moritz, G and Nauen, R (2017) Fitness costs and life table parameters of highly insecticide-resistant strains of Plutella xylostella (L.)(Lepidoptera: Plutellidae) at different temperatures. Pest Management Science 73, 17891797.CrossRefGoogle ScholarPubMed
Surfer, (2018) Version 15.2.305. Golden Software, LLC, Golden, Colorado, USA.Google Scholar
Talekar, NS (1992) Management of Diamondback Moth and Other Crucifer Pests: Proceedings of the Second International Workshop. Asian Vegetable Research and Development Center: Shanhua, Taiwan.Google Scholar
Talekar, NS and Shelton, AM (1993) Biology, ecology, and management of the diamondback moth. Annual Review of Entomology 38, 275301.CrossRefGoogle Scholar
Talekar, N and Yang, J (1991) Characteristic of parasitism of diamondback moth by two larval parasites. Entomophaga 36, 95104.Google Scholar
Tamiru, A, Getu, E, Jembere, B and Bruce, T (2012) Effects of temperature and relative humidity on the development and fecundity of Chilo partellus (Swinhoe) (Lepidoptera: Crambidae). Bulletin of Entomological Research 102, 915. doi: 10.1017/S0007485311000307.CrossRefGoogle ScholarPubMed
Umeya, K and Yamada, H (1973) Threshold temperature and thermal constants for development of the diamondback moth, Plutella xylostella L., with reference to their local differences. Japanese Journal of Applied Entomology and Zoology 17, 1924.CrossRefGoogle Scholar
Vargas, RI, Walsh, WA, Kanehisa, DT, Jang, EB and Armstrong, JW (1997) Demography of four Hawaiian fruit flies (Diptera: Tephritidae) reared at five constant temperatures. Annals of the Entomological Society of America 90, 162168.Google Scholar
Verkerk, RHJ and Wright, DJ (1996) Multitrophic interactions and management of the diamondback moth: A review. Bulletin of Entomological Research 86, 205216.CrossRefGoogle Scholar
Xing, K, Ma, CS, Zhao, F and Han, JC (2015) Effects of large temperature fluctuations on hatching and subsequent development of the diamondback moth (Lepidoptera: Plutellidae). Florida Entomologist 98, 651659. doi: 10.1653/024.098.0240.CrossRefGoogle Scholar