Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-22T18:30:42.744Z Has data issue: false hasContentIssue false

Detection of seed DNA in regurgitates of granivorous carabid beetles

Published online by Cambridge University Press:  14 August 2015

C. Wallinger*
Affiliation:
Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
D. Sint
Affiliation:
Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
F. Baier
Affiliation:
Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
C. Schmid
Affiliation:
Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
R. Mayer
Affiliation:
Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
M. Traugott
Affiliation:
Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
*
*Author for correspondence Phone: 0043512-507-51675 Fax: 0043512-507-51799 E-mail: [email protected]

Abstract

Granivory can play a pivotal role in influencing regeneration, colonization as well as abundance and distribution of plants. Due to their high abundance, nutrient content and longevity, seeds are an important food source for many animals. Among insects, carabid beetles consume substantial numbers of seeds and are thought to be responsible for a significant amount of seed loss. However, the processes that govern which seeds are eaten and are therefore prevented from entering the seedbank are poorly understood. Here, we assess if DNA-based diet analysis allows tracking the consumption of seeds by carabids. Adult individuals of Harpalus rufipes were fed with seeds of Taraxacum officinale and Lolium perenne allowing them to digest for up to 3 days. Regurgitates were tested for the DNA of ingested seeds at eight different time points post-feeding using general and species-specific plant primers. The detection of seed DNA decreased with digestion time for both seed species, albeit in a species-specific manner. Significant differences in overall DNA detection rates were found with the general plant primers but not with the species-specific primers. This can have implications for the interpretation of trophic data derived from next-generation sequencing, which is based on the application of general primers. Our findings demonstrate that seed predation by carabids can be tracked, molecularly, on a species-specific level, providing a new way to unravel the mechanisms underlying in-field diet choice in granivores.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bohan, D., Boursault, A., Brooks, D. & Petit, S. (2011) Nationale-scale regulation of the weed seedbank by carabid predators. Journal of Applied Ecology 48, 888898.CrossRefGoogle Scholar
Borsch, T., Hilu, K., Quandt, D., Wilde, V., Neinhuis, C. & Barthlott, W. (2003) Noncoding plastid trnT–trnF sequences reveal a well resolved phylogeny of basal angiosperms. Journal of Evolutionary Biology 16, 558576.CrossRefGoogle ScholarPubMed
Boursault, A. (2013) Caractérisation des relations trophiques entre composantes d'un agroécosystème: le cas de la prédation des graines d'adventices par les Carabidae, INRA/Universite de Bourgogne.Google Scholar
Brandmayer, T. (1990) Spermophagous (seed-eating) ground beetles: first comparison of the diet and ecology of the harpaline genera Harpalus and Ophonus (Col., Carabidae). pp. 307316 in Stork, N. (Ed.) The Role of Ground Beetles in Ecological and Environmental Studies. Andover, Intercept.Google Scholar
Crawley, M. (1997) Plant–herbivore dynamics. in Crawley, M. (Ed.) Plant Ecology. Oxford, Blackwell Publishing Ltd, 401474.Google Scholar
Czernik, M., Taberlet, P., Swislocka, M., Czajkowska, M., Duda, N. & Ratkiewicz, M. (2013) Fast and efficient DNA-based method for winter diet analysis from stools of three cervids: moose, red deer, and roe deer. Acta Theriologica 58, 379386.CrossRefGoogle Scholar
Forget, P.-M., Lambert, J., Hulme, P. & Cander Wall, S. (2005) Seed Fate: Predation, Dispersal and Seedling Establishment. Wallingford, UK, CABI Publishing.CrossRefGoogle Scholar
García-Robledo, C., Erickson, D., Staines, C., Erwin, T. & Kress, W. (2013) Tropical plant–herbivore networks: reconstructing species interactions using DNA barcodes. PLoS ONE 8, e52967.CrossRefGoogle ScholarPubMed
Garros, C., Ngugi, N., Githeko, A., Tuno, N. & Yan, G. (2008) Gut content identification of larvae of the Anopheles gambiae complex in western Kenya using a barcoding approach. Molecular Ecology Resources 8, 512518.CrossRefGoogle ScholarPubMed
Greenstone, M., Rowley, D., Weber, D., Payton, M. & Hawthorne, D. (2007) Feeding mode and prey detectability half-lives in molecular gut-content analysis: an example with two predators of the Colorado potato beetle. Bulletin of Entomological Research 97, 201209.CrossRefGoogle ScholarPubMed
Händeler, K., Wägele, H., Wahrmund, U., Rüdinger, M. & Knoop, V. (2010) Slugs’ last meals: molecular identification of sequestered chloroplasts from different algal origins in Sacoglossa (Opisthobranchia, Gastropoda). Molecular Ecology Resources 10, 968978.CrossRefGoogle ScholarPubMed
Harper, G.L., King, R.A., Dodd, C.S., Harwood, J.D., Glen, D.M., Bruford, M.W. & Symondson, W.O. (2005) Rapid screening of invertebrate predators for multiple prey DNA targets. Molecular Ecology 14, 819827.CrossRefGoogle ScholarPubMed
Heithaus, E. (1981) Seed predation by rodents on three ant-dispersed plants. Ecology 62, 136145.CrossRefGoogle Scholar
Hereward, J. & Walter, G. (2012) Molecular interrogation of the feeding behaviour of field captured individual insects for interpretation of multiple host plant use. PLoS ONE 7, e44435.CrossRefGoogle ScholarPubMed
Hereward, J., DeBarro, P. & Walter, G. (2013) Resolving multiple host use of an emergent pest of cotton with microsatellite data and chloroplast markers (Creontiades dilutus Stål; Hemiptera, Miridae). Bulletin of Entomological Research 103, 611618.CrossRefGoogle ScholarPubMed
Holland, J. (2002) The Agroecology of Carabid Beetles Andover. Intercept Limited.Google Scholar
Honek, A. & Martinkova, Z. (2003) Seed consumption by ground beetles. BCPC International Congress: Crop Science and Technology 1, 451456.Google Scholar
Honek, A., Martinkova, Z. & Jarosik, V. (2003) Ground beetles (Carabidae) as seed predators. European Journal of Entomology 100, 531544.CrossRefGoogle Scholar
Honek, A., Zdenka, M., Saska, P. & Pekar, S. (2007) Size and taxonomic constraints determine the seed preferences of Carabidae (Coleoptera). Basic and Applied Ecology 8, 343353.CrossRefGoogle Scholar
Hoogendoorn, M. & Heimpel, G. (2001) PCR-based gut content analysis of insect predators: using ribosomal ITS-1 fragments from prey to estimate predation frequency. Molecular Ecology 10, 20592067.CrossRefGoogle ScholarPubMed
Hosseini, R., Schmidt, O. & Keller, M. (2008) Factors affecting detectability of prey DNA in the gut contents of invertebrate predators: a polymerase chain reaction-based method. Entomologia Experimentalis et Applicata 126, 194202.CrossRefGoogle Scholar
Hulme, P. & Benkman, C. (2002) Granivory. in Herrera, C. and Pellmyr, O. (Eds) Plant-animal Interactions: an Evolutionary Approach. Oxford, UK, Blackwell Science, 132154.Google Scholar
Janzen, D. (1971) Seed predation by animals. Annual Review of Ecology and Systematics 2, 465492.CrossRefGoogle Scholar
Juen, A. & Traugott, M. (2005) Detecting predation and scavenging by DNA gut-content analysis: a case study using a soil insect predator-prey system. Oecologia 142, 344352.CrossRefGoogle ScholarPubMed
Junnila, A., Müller, G. & Schlein, Y. (2010) Species identification of plant tissues from the gut of Anopheles sergentii by DNA analysis. Acta Tropica 115(3), 227233.CrossRefGoogle ScholarPubMed
Jurado-Rivera, J., Vogler, A., Reid, C., Petitpierre, E. & Gómez-Zurita, J. (2009) DNA barcoding insect–host plant associations. Proceedings of the Royal Society B 276, 639648.CrossRefGoogle ScholarPubMed
King, R., Read, D., Traugott, M. & Symondson, W. (2008) Molecular analysis of predation: a review of best practice for DNA-based approaches. Molecular Ecology 17, 947963.CrossRefGoogle ScholarPubMed
King, R., Moreno-Ripoll, R., Agusti, N., Simon, P., Shayler, S., Bell, J., Bohan, D. & Symondson, W. (2010) Multiplex reactions for the molecular detection of predation on pest and nonpest invertebrates in agroecosystems. Molecular Ecology Resources 11, 370373.CrossRefGoogle ScholarPubMed
Kitson, J., Warren, B., FFB, V., Baider, C., Strasberg, D. & Emerson, B. (2013) Molecular characterization of trophic ecology within an island radiation of insect herbivores (Curculionidae: Entiminae: Cratopus). Molecular Ecology 22, 54415455.CrossRefGoogle ScholarPubMed
Lövei, G. & Sunderland, K. (1996) Ecology and behaviour of ground beetles (Coleoptera: Carabidae). Annual Review of Entomology 41, 231256.CrossRefGoogle ScholarPubMed
Luff, M. (2002) Carabid assemblage organization and species composition. pp. 4179 in Holland, J. (Ed.) The Agroecology of Carabid Beetles. Andover, UK, Intercept.Google Scholar
Lundgren, J. (2009) Relationships of Natural Enemies and Non-prey Foods. UK, Springer Science & Business Media.CrossRefGoogle Scholar
Matheson, C., Müller, G., Junnila, A., Vernon, K., Hausmann, A., Miller, M., Greenblatt, C. & Schlein, Y. (2008) A PCR method for detection of plant meals from the gut of insects. Organisms Diversity and Evolution 7, 294303.CrossRefGoogle Scholar
Monzo, C., Sabater-Muñoz, B., Urbaneja, A. & Castañera, P. (2011) The ground beetle Pseudophonus rufipes revealed as predator of Ceratitis capitata in citrus orchards. Biological Control 56, 1721.CrossRefGoogle Scholar
Morales, S. & Holben, W. (2009) Empirical testing of 16S rRNA gene PCR primer pairs reveals variance in target specificity and efficacy not suggested by in silico analysis. Applied and Environmental Microbiology 75, 26772683.CrossRefGoogle Scholar
Navarro, S., Jurado-Rivera, J., Gomez-Zurita, J., Lyal, C. & Vogler, A. (2010) DNA profiling of host-herbivore interactions in tropical forests. Ecological Entomology 35, 1832.CrossRefGoogle Scholar
Nejstgaard, J., Frischer, M., Raule, C., Gruebel, R., Kohlberg, K. & Verity, P. (2003) Molecular detection of algal prey in copepod guts and fecal pellets. Limnology and Oceanography: Methods 1, 2938.Google Scholar
Paill, W. (2004) Slug feeding in the carabid beetle Pterostichus melanarius: seasonality and dependence on prey size. Journal of Molluscan Studies 70, 203205.CrossRefGoogle Scholar
Pegard, A., Miquel, C., Valentini, A., Coissac, E., Bouvier, F., Franois, D., Taberlet, P., Engel, E. & Pompanon, F. (2009) Universal DNA-Based methods for assessing the diet of grazing livestock and wildlife from feces. Journal of Agriculture and Food Chemistry 57, 57005706.CrossRefGoogle ScholarPubMed
Pocock, M., Evans, D. & Memmott, J. (2012) The robustness and restoration of a network of ecological networks. Science 335, 973977.CrossRefGoogle ScholarPubMed
Polz, M. & Cavanaugh, C. (1998) Bias in template-to-product ratios in multitemplate PCR. Applied and Environmental Microbiology, 64(10), 37243730.CrossRefGoogle ScholarPubMed
Pompanon, F., Deagle, B., Symondson, W., Brown, D., Jarman, S. & Taberlet, P. (2012) Who is eating what: diet assessment using next generation sequencing. Molecular Ecology 21, 19311950.CrossRefGoogle ScholarPubMed
Pumarino, L., Alomar, O. & Agusti, N. (2011) Development of specific ITS markers for plant DNA identification within herbivorous insects. Bulletin of Entomological Research 101, 271276.CrossRefGoogle ScholarPubMed
Raso, L., Sint, D., Mayer, R., Plangg, S., Recheis, R., Kaufmann, R. & Traugott, M. (2014) Intraguild predation in pioneer predator communities of Alpine glacier forelands. Molecular Ecology 23, 37443754.CrossRefGoogle ScholarPubMed
R Core Team (2012) R: A Language and Environment for Statistical Computing Vienna, Austria, R Foundation for Statistical Computing.Google Scholar
Ritz, C. & Streibig, J.C. (2005) Bioassay analysis using R. Journal of Statistical Software 12, 118.CrossRefGoogle Scholar
Schallhart, N., Tusch, M., Wallinger, C., Staudacher, K. & Traugott, M. (2012) Effects of plant identity and diversity on the dietary choice of a soil-living insect herbivore. Ecology 93, 26502657.CrossRefGoogle ScholarPubMed
Schnell, B., Fraser, M., Willerslev, E. & Gilbert, M. (2010) Characterisation of insect and plant origins using DNA extracted from small volumes of bee honey. Arthropod-Plant Interactions 4, 107116.CrossRefGoogle Scholar
Seeber, J., Rief, A., Seeber, G., Meyer, E. & Traugott, M. (2010) Molecular identification of detritivorous soil invertebrates from their faecal pellets. Soil Biology and Biochemistry 42, 12631267.CrossRefGoogle Scholar
Sint, D., Raso, L., Kaufmann, R. & Traugott, M. (2011) Optimizing methods for PCR-based analysis of predation. Molecular Ecology Resources 11, 795801.CrossRefGoogle ScholarPubMed
Sint, D., Raso, L. & Traugott, M. (2012) Advances in multiplex PCR: balancing primer efficiencies and improving detection success. Methods in Ecology and Evolution 3, 898905.CrossRefGoogle ScholarPubMed
Sint, D., Niederklapfer, B., Kaufmann, R. & Traugott, M. (2014) Group-specific multiplex PCR detection systems for the identification of flying insect prey. PLoS ONE 9, e115501.CrossRefGoogle ScholarPubMed
Sipos, R., Szekely, A., Palatinsky, M., Révész, S., Márialigeti, K. & Nikolausz, M. (2007) Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targetting bacterial community analysis. FEMS Microbiology Ecology 60, 341350.CrossRefGoogle ScholarPubMed
Soininen, E., Valentini, A., Coissac, E., Miquel, C., Gielly, L., Brochmann, C., Brysting, A., Sonstebo, J., Ims, R., Yoccoz, N. & Taberlet, P. (2009) Analysing diet of small herbivores: the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures. Frontiers in Zoology 6, 19.CrossRefGoogle ScholarPubMed
Soininen, E., Zinger, L., Gielly, L., Bellemain, E., Bråthen, K., Brochmann, C., Epp, L., Gussarova, G., Hassel, K. & Henden, J. (2013) Shedding new light on the diet of Norwegian lemmings: DNA metabarcoding of stomach content. Polar Biology 36, 10691076.CrossRefGoogle Scholar
Srivathsan, A., Sha, J., Vogler, A. & Meier, R. (2014) Comparing the effectiveness of metagenomics and metabarcoding for diet analysis of a leaf-feeding monkey (Pygathrix nemaeus) Molecular Ecology Resources 15(2), 250261.CrossRefGoogle Scholar
Staudacher, K., Wallinger, C., Schallhart, N. & Traugott, M. (2011) Detecting ingested plant DNA in soil-living insect larvae. Soil Biology and Biochemistry 43, 346350.CrossRefGoogle ScholarPubMed
Staudacher, K., Schallhart, N., Thalinger, B., Wallinger, C., Juen, A. & Traugott, M. (2013) Plant diversity affects behavior of generalist root herbivores, reduces crop damage and enhances crop yield. Ecological Applications 23, 11351145.CrossRefGoogle ScholarPubMed
Straube, D. (2013) Development and application of molecular techniques to assess feeding interactions in a forest invaded by the Asian earthworm Amynthas agrestis, PhD Thesis, pp. 102, University of Innsbruck.Google Scholar
Symondson, W. & Harwood, J. (2014) Special issue on molecular detection of trophic interactions: Unpicking the tangled bank. Molecular Ecology 23, 36013604.CrossRefGoogle ScholarPubMed
Taberlet, P., Gielly, L., Pautou, G. & Bouvet, J. (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17, 11051109.CrossRefGoogle ScholarPubMed
Thiele, H.-U. (1977) Carabid Beetles in their Environments: A Study on Habitat Selection by Adaptation in Physiology and Behaviour. Berlin, Heidelberg, New York, Springer.CrossRefGoogle Scholar
Tooley, J. & Brust, G. (2002) Weed seed predation by carabid beetles. pp. 215229 in Holland, J.M. (Ed.) The Agroecology of Carabid Beetles. Andover, Intercept.Google Scholar
Traugott, M., Kamenova, S., Ruess, L., Seeber, J. & Plantegenest, M. (2013) Empirically characterising trophic networks: what emerging DNA-based methods, stable isotope and fatty acid analyses can offer. pp. 177224 in Woodward, G. and Bohan, D.A. (Eds) Ecological Networks in an Agricultural World. Academic Press, San Diego CrossRefGoogle Scholar
Troedsson, C., Frischer, M., Neistgaard, J. & Thompson, E. (2007) Molecular quantification of differential ingestion and particle trapping rates by the appendicularian Oikopleura dioica as a function of prey size and shape. Limnology and Oceanography 52, 416427.CrossRefGoogle Scholar
Waldner, T. & Traugott, M. (2012) DNA-based analysis of regurgitates: a noninvasive approach to examine the diet of invertebrate consumers. Molecular Ecology Resources 12, 669675.CrossRefGoogle ScholarPubMed
Waldner, T., Sint, D., Juen, A. & Traugott, M. (2013) The effect of predator identity on post-feeding prey DNA detection success in soil-dwelling macro-invertebrates. Soil Biology and Biochemistry 63, 116123.CrossRefGoogle Scholar
Wallinger, C., Juen, A., Staudacher, K., Schallhart, N., Mitterrutzner, E., Steiner, E.-M., Thalinger, B. & Traugott, M. (2012) Rapid plant identification using species- and group-specific primers targeting chloroplast DNA. PLOS ONE 7, e29473.CrossRefGoogle ScholarPubMed
Wallinger, C., Staudacher, K., Schallhart, N., Peter, E., Dresch, P., Juen, A. & Traugott, M. (2013) The effect of plant identity and the level of plant decay on molecular gut content analysis in a herbivorous soil insect. Molecular Ecology Resources 13, 7583.CrossRefGoogle Scholar
Wallinger, C., Staudacher, K., Schallhart, N., Mitterrutzner, E., Steiner, E.-M., Juen, A. & Traugott, M. (2014) How generalist herbivores exploit below-ground plant diversity in temperate grasslands. Molecular Ecology 23, 38263837.CrossRefGoogle Scholar
Westerman, P., Wes, J., Kropff, M. & Van der Werf, W. (2003) Annual losses of weed seeds due to predation in organic cereal fields. Journal of Applied Ecology 40, 824836.CrossRefGoogle Scholar
Wilson, E., Sheena, S., LeVan, K. & Holway, D. (2010) Pollen foraging behaviour of solitary Hawaiian bees revealed through molecular pollen analysis. Molecular Ecology 19, 48234829.CrossRefGoogle ScholarPubMed