Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-22T18:52:32.210Z Has data issue: false hasContentIssue false

Ctenophthalmus baeticus boisseauorum (Beaucournu, 1968) and Ctenophthalmus apertus allani (Smit, 1955) (Siphonaptera: Ctenophthalmidae) as synonymous taxa: morphometric, phylogenetic, and molecular characterization

Published online by Cambridge University Press:  27 April 2020

Antonio Zurita
Affiliation:
Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41012Seville, Spain
Ángela María García-Sánchez
Affiliation:
Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41012Seville, Spain
Cristina Cutillas*
Affiliation:
Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41012Seville, Spain
*
Author for correspondence: Cristina Cutillas, Email: [email protected]

Abstract

The family Ctenophthalmidae (Order Siphonaptera) has been considered as a ‘catchall’ for a wide range of divergent taxa showing a paraphyletic origin. In turn, Ctenophthalmus sp. (Ctenophthalmidae) includes 300 valid described taxa. Within this genus, males are easily distinguishable basing on the size, shape, and chaetotaxy of their genitalia; however, females show slight morphological differences with each other. The main objective of this work was to carry out a comparative morphometric, phylogenetic, and molecular study of two different subspecies: Ctenophthalmus baeticus boisseauorum and Ctenophthalmus apertus allani in order to clarify and discuss its taxonomic status. From a morphological and biometrical point of view, we found clear differences between modified abdominal segments of males of both subspecies and slight differences in the margin of sternum VII of all female specimens which did not correspond with molecular and phylogenetic results based on four different molecular markers (Internal Transcribed Spacer 1 and 2 of ribosomal DNA, and the partial cytochrome c oxidase subunit 1 and cytochrome b of mitochondrial DNA). Thus, we observed a phenotypic plasticity between both subspecies, which did not correspond with a real genotypic variability nor different environmental or ecological conditions. Basing on these results, we could consider that there are no solid arguments to consider these two ‘morphosubspecies’ as two different taxa. We propose that C. b. boisseauorum should be considered as a junior synonym of C. a. allani.

Type
Research Paper
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta, R and Hastriter, MW (2017) A review of the flea genus Phalacropsylla Rothschild, 1915 (Siphonaptera, Ctenophthalmidae, Neopsyllinae, Phalacropsyllini) with new host and distributional records. Zookeys 18, 2743.CrossRefGoogle Scholar
Beaucournu, JC (1968) Hystrichopsyllidae (Insecta: Siphonaptera) nouveaux pour la faune espagnole. Description de Ctenophthalmus (C.) baeticus Boisseaui. ssp. nova. Bulletin de la Société scientifique de Bretagne 42, 241248.Google Scholar
Beaucournu, JC and Launay, H (1978) Nouvelles captures de puces (Siphonaptera) en Espagne et description de trois sousespèces nouvelles. Annales de la Société Entomologique de France 14, 281292.Google Scholar
Beaucournu, JC and Launay, H (1990) Les Puces (Siphonaptera) de France et du Bassin méditerranéen occidental. Faune de France, 76, Paris. Fedération Française des Sociétés des Sciences Naturelles.Google Scholar
Beaucournu, JC and Lorvelec, O (2014) Mise à jour taxonomique et répartition des puces du genre Ctenophthalmus Kolenati 1856 en region paléarctique occidentale (Insecta: Siphonaptera: Ctenophthalmidae). Annales de la Société entomologique de France 50, 219247.CrossRefGoogle Scholar
Bybee, SM, Zaspel, JM, Beucke, KA, Scott, CH, Smith, BM and Branham, MA (2010) Are molecular data supplanting morphological data in modern phylogenetic studies? Systematic Entomology 35, 25.CrossRefGoogle Scholar
Dittmar, K and Whiting, MF (2003) Genetic and phylogeographic structure of populations of Pulex simulans (Siphonaptera) in Peru inferred from two genes (Cytb and CoII). Parasitology Research 91, 5559.Google Scholar
Dryden, MW (1993) Biology of fleas of dogs and cats. Compendium on Continuing Education for the Practising Veterina 15, 569579.Google Scholar
Dujardin, JP (2002) BAC software. Institut de Recherche pour le Développement (IRD, France). Version 3. Available at http://www.fsf.org/copyleft/gpl.htmlGoogle Scholar
Dujardin, JP and Le Pont, F (2004) Geographical variation of metric properties within the neotropical sandflies. Infection Genetics and Evolution 4, 353359.CrossRefGoogle ScholarPubMed
Edgar, RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 17921797.CrossRefGoogle ScholarPubMed
Felsenstein, J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783791.CrossRefGoogle ScholarPubMed
Folmer, O, Black, M, Hoeh, W, Lutz, R and Vrijenhoek, R (1994) DNA Primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology Biotechnology 3, 294299.Google ScholarPubMed
Fusco, G and Minelli, A (2010) Phenotypic plasticity in development and evolution: facts and concepts. Introduction. Philosophical Transactions of the Royal Society of London B: Biological Sciences 365, 547566.CrossRefGoogle ScholarPubMed
García-Sánchez, AM, Rivero, J, Callejón, R, Zurita, A, Reguera-Gomez, M, Valero, MA and Cutillas, C (2019) Differentiation of Trichuris species using a morphometric approach. International Journal of Parasitology: Parasites and Wildlife 9, 218223.Google ScholarPubMed
Gasser, RB, Nansen, P and Guldberg, P (1996) Fingerprinting sequence variation in ribosomal DNA of parasites by DGGE. Molecular Cellular Probes 10, 99105.CrossRefGoogle ScholarPubMed
Ghavami, MB, Mirzadeh, H, Mohammadi, J and Fazaeli, A (2018) Molecular survey of ITS1 spacer and Rickettsia infection in human flea, Pulex irritans. Parasitology Research 117, 14331442.CrossRefGoogle ScholarPubMed
Gómez, MS, Fernández-Salvador, R and Garcia, R (2003) First report of Siphonaptera infesting Microtus (Microtus) cabrerae (Rodentia-Muridae-Arvicolinae) in Cuenca, Spain and notes about the morphologic variability of Ctenophthalmus (Ctenophthalmus) apertus personatus (Insecta-Siphonaptera-Ctenophthalmidae). Parasite 10, 127131.CrossRefGoogle Scholar
Guindon, S and Gascuel, O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696704.CrossRefGoogle ScholarPubMed
Hebert, PDN, Cywinska, A, Ball, SL and De Waard, JR (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London 270, 313321.CrossRefGoogle ScholarPubMed
Holland, GP (1964) Evolution, classification, and host relationships of Siphonaptera. Annual Review of Entomology 9, 123146.CrossRefGoogle Scholar
Hopkins, GHE and Rothschild, M (1953) An Illustrated Catalogue of the Rothschild Collection of Fleas in the British Museum (Nat. Hist.). Vol. I. Tungidae and Pulicidae. Cambridge, UK: Cambridge University Press.Google Scholar
Hopkins, GHE and Rothschild, M (1966) An Illustrated Catalogue of the Rothschild Collection of Fleas (Siphonaptera) in the British Museum (Natural History). Vol IV. Hystrichopsyllidae (Ctenophthalminae, Dinopsyllinae, Doratopsyllinae and Listropsyllinae). London: Trustees of the British Museum (Natural History), p. 549.Google Scholar
Hornok, S, Beck, R, Farkas, R, Grima, A, Otranto, D, Kontschán, J, Takács, N, Horváth, G, Szőke, K, Szekeres, S, Majoros, G, Juhász, A, Salant, H, Hofmann-Lehmann, R, Stanko, M and Baneth, G (2018) High mitochondrial sequence divergence in synanthropic flea species (Insecta: Siphonaptera) from Europe and the Mediterranean. Parasites & Vectors 11, 221.CrossRefGoogle ScholarPubMed
Huelsenbeck, JP and Rannala, B (1997) Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science (New York, N.Y.) 276, 227232.CrossRefGoogle Scholar
Keskin, A (2019) A new flea species of the genus Palaeopsylla (Insecta: Siphonaptera: Ctenophthalmidae) from Turkey. Journal of Medical Entomology 57, 8891.CrossRefGoogle Scholar
Keskin, A and Beaucournu, JC (2019a) Palaeopsylla (Palaeopsylla) aysenurae N. sp., a new ctenophthalmid flea (Siphonaptera: Ctenophthalmidae) from Turkey. Zootaxa. doi: 10.11646/zootaxa.4613.2.10CrossRefGoogle Scholar
Keskin, A and Beaucournu, JC (2019b) Descriptions of two new species and a new subspecies of the genus Ctenophthalmus (Insecta: Siphonaptera: Ctenophthalmidae) from Turkey. Journal of Medical Entomology 56, 12751282.CrossRefGoogle Scholar
Lawrence, AL, Brown, GK, Peters, B, Spielman, DS, Morin-Adeline, M and Slapeta, J (2014) High phylogenetic diversity of the cat flea (Ctenocephalides felis) at two mitochondrial DNA markers. Medical and Veterinary Entomology 28, 330336.CrossRefGoogle ScholarPubMed
Lewis, RE (1993) Notes on the geographical distribution and host preferences in the order Siphonaptera. Part 8. New taxa described between 1984 and 1990, with a current classification of the order. Journal of Medical Entomology 30, 239256.CrossRefGoogle ScholarPubMed
Linardi, PM (2000) Sifonápteros do Brasil. Sao Paulo, Museu de Zoologia da Universidade de Sao Paulo, USAP/FAPESP, 200, 291p.Google Scholar
Luchetti, A, Trentini, M, Pampiglone, S, Fiorawanti, ML and Mantovani, B (2007) Genetic variability of Tunga penetrans (Siphonaptera, Tungidae) and fleas across South America and Africa. Parasitology Research 100, 593598.CrossRefGoogle ScholarPubMed
Márquez, FJ and Soringuer, RC (1987) Variación intrapoblacional en las hembras de Ctenophthalmus apertus Meylani Beaucournu, Gilot et Vericard, 1973 (Siphonaptera: Hystrichopsyllidae). Revista Ibérica de Parasitología 47, 419424.Google Scholar
Marrugal, A, Callejón, R, de Rojas, M, Halajian, A and Cutillas, C (2013) Morphological, biometrical and molecular characterization of Ctenocephalides felis and Ctenocephalides canis isolated from dogs from different geographical regions. Parasitology Research 112, 22892298.CrossRefGoogle ScholarPubMed
Marshall, AG (1981) Sex ratio in ectoparasitic insects. Ecological Entomology 6, 155174.CrossRefGoogle Scholar
Pardo, A and Ruiz, MA (2002) SPSS 11. Guía para el análisis de datos, vol. 714. Madrid: McGraw-Hill.Google Scholar
Paz, A, González, M and Crawford, AJ (2011) Códigos de barras de la vida: introducción y perspectiva. Acta Biológica Colombiana 16, 161175.Google Scholar
Posada, D (2008) Jmodeltest: phylogenetic model averaging. Molecular Biology and Evolution 25, 12531256.CrossRefGoogle ScholarPubMed
Posada, D and Buckley, TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53, 793808.CrossRefGoogle ScholarPubMed
Rambaut, A and Drummond, A (2007) Tracer v1.6. Available at http://beast.bio.ed.ac.uk/Google Scholar
Ronquist, F and Huelsenbeck, JP (2003) MrBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxford, England) 19, 15721574.CrossRefGoogle ScholarPubMed
Sanchez, J and Lareschi, M (2014) Two new species of Neotyphloceras (Siphonaptera: Ctenophthalmidae) from Argentinean Patagonia. Zootaxa 27, 159170.CrossRefGoogle Scholar
Smit, FGAM (1955) A new Ctenophthalmus (Siphonaptera: Hystrichopsyllidae) from France and Spain. The Entomology Monthly Magazine 91, 145147.Google Scholar
Tamura, K, Peterson, D, Peterson, N, Stecher, G, Nei, M and Kumar, S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.CrossRefGoogle ScholarPubMed
Valero, MA, Perez-Crespo, I, Periago, MV, Khoubbane, M and Mas-Coma, S (2009) Fluke egg characteristics for the diagnosis of human and animal fascioliasis by Fasciola hepatica and F. gigantica. Acta Tropica 111, 150159.CrossRefGoogle Scholar
Vobis, M, D'Haese, J, Mehlhorn, H, Mencke, N, Blagburn, BL, Bond, R, Denholm, I, Dryden, MW, Payne, P, Rust, MK, Schroeder, I, Vaughn, MB and Bledsoe, D (2004) Molecular phylogeny of isolates of Ctenocephalides felis and related species based on analysis of ITS1, ITS2 and mitochondrial 16S rDNA sequences and random binding primers. Parasitology Research 94, 219226.CrossRefGoogle ScholarPubMed
Whiting, MF (2002) Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera. Zoologica Scripta 31, 93104.CrossRefGoogle Scholar
Whiting, MF, Whiting, AS, Hastriter, MW and Dittmar, K (2008) A molecular phylogeny of fleas (Insecta: Siphonaptera): origins and host associations. Cladistics 24, 677707.CrossRefGoogle Scholar
Zhu, Q, Hastriter, MW, Whiting, MF and Dittmar, K (2015) Fleas (Siphonaptera) are Cretaceous, and evolved with Theria. Molecular Phylogenetics and Evolution 90, 129139.CrossRefGoogle ScholarPubMed
Zurita, A, Callejón, R, De Rojas, M, Gómez-López, MS and Cutillas, C (2015) Molecular study of Stenoponia tripectinata tripectinata (Siphonaptera: Ctenophthalmidae: Stenoponiinae) from the Canary Islands: taxonomy and phylogeny. Bulletin of Entomological Research 104, 704711.CrossRefGoogle Scholar
Zurita, A, Callejón, R, de Rojas, M, Halajian, A and Cutillas, C (2016) Ctenocephalides felis and Ctenocephalides canis: introgressive hybridization? Systematic Entomology 41, 567579.CrossRefGoogle Scholar
Zurita, A, Callejón, R, de Rojas, M and Cutillas, C (2018 a) Morphological and molecular study of the genus Nosopsyllus (Siphonaptera: Ceratophyllidae). Nosopsyllus barbarus (Jordan & Rothschild 1912) as a junior synonym of Nosopsyllus fasciatus (Bosc, d'Antic 1800). Insect Systematic and Evolution 49, 81101.CrossRefGoogle Scholar
Zurita, A, Callejón, R, de Rojas, M and Cutillas, C (2018b) Morphological, biometrical and molecular characterization of Archaeopsylla erinacei (Bouché, 1835). Bulletin of Entomological Research 22, 113.Google Scholar
Zurita, A, Callejón, R, García-Sánchez, ÁM, Urdapilleta, M, Lareschi, M and Cutillas, C (2019) Origin, evolution, phylogeny and taxonomy of Pulex irritans. Medical and Veterinary Entomology 33, 296311.CrossRefGoogle ScholarPubMed
Supplementary material: Image

Zurita et al. supplementary material

Zurita et al. supplementary material 1

Download Zurita et al. supplementary material(Image)
Image 747.7 KB
Supplementary material: Image

Zurita et al. supplementary material

Zurita et al. supplementary material 2

Download Zurita et al. supplementary material(Image)
Image 783.3 KB
Supplementary material: Image

Zurita et al. supplementary material

Zurita et al. supplementary material 3

Download Zurita et al. supplementary material(Image)
Image 808.7 KB
Supplementary material: File

Zurita et al. supplementary material

Tables S1-S2

Download Zurita et al. supplementary material(File)
File 168.8 KB