Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-04T15:54:57.007Z Has data issue: false hasContentIssue false

Convergence of molecular and morphological data reveals phylogenetic information on Tetranychus species and allows the restoration of the genus Amphitetranychus (Acari: Tetranychidae)

Published online by Cambridge University Press:  10 July 2009

M. Navajas
Affiliation:
Laboratoire de Zoologie, INRA-ENSAM-ORSTOM, Place P. Viala, 34060 Montpellier, France Institut des Sciences de L'Evolution (CNRS-UMR 5554), Laboratoire Génétique et Environnement, Université Montpellier II, Montpellier, France
J. Gutierrez
Affiliation:
Laboratoire de Zoologie, INRA-ENSAM-ORSTOM, Place P. Viala, 34060 Montpellier, France
T. Gotoh
Affiliation:
Laboratory of Applied Entomology and Zoology, Faculty of Agriculture, Ibaraki University, Ami, Ibaraki 300-03, Japan

Abstract

Nucleotide sequence variation and morphological characters were used to study the evolutionary relationships among nine tetranychid mites species. A phylogenetic study of this family based on mitochondrial cytochrome oxidase subunit I (COI) sequences had previously placed the species Tetranychus viennensis Zacher outside the other species analysed in the genus. Phylogenetic relations within the genus were re-examined with the addition of the species Tetranychus quercivorus Ehara & Gotoh, which is morphologically close to T. viennensis. Another region of the genome, the second internal transcribed spacer (ITS2) of ribosomal DNA, was also studied and proved to be of considerable interest at this taxonomic level. Both COI and ITS2 sequences indicated a close relationship between T. viennensis and T. quercivorus, which are grouped together and distinct from the other Tetranychus examined. The two species display morphological characteristics such as the absence of a medio-dorsal spur on all empodia of the legs of both sexes and the presence of anastomosing peritremes. This distinguishes them from the other members of the genus Tetranychus. The convergence of molecular and morphological data suggests that T. viennensis and T. quercivorus should not be classified in the genus Tetranychus. It is proposed that the genus Amphitetranychus Oudemans should be restored for classification of these species. Finally, a key to the Tetranychini tribe genera with one pair of para-anal setae is presented.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ehara, S. (1956) Some spider mites from northern Japan. Journal of the Faculty of Science, Hokkaido University. Ser. VI, Zool. 12, 244258.Google Scholar
Felsenstein, J. (1993) PHYLIP (Phylogeny Inference Package). Version 3.5p. Seattle, Department of Genetics, University of Washington.Google Scholar
Fournier, D., Bride, J.M. & Navajas, M. (1994) Mitochondrial DNA from spider mites: isolation, restriction map and partial sequence of the Cytochrome Oxidase Subunit I gene. Genetica 94, 7375.CrossRefGoogle ScholarPubMed
Geijskes, D.C. (1939) Beiträge zur kenntnis der Europäischen spinnmilben (Acari, Tetranychidae), mit besonderer berücksichtigung der arten. Mededelingen van de Landbouwhoogeschool te Wageningen 42, 168.Google Scholar
Gotoh, T., Oku, H., Moriya, K. & Odawara, M. (1995) Nucleus–cytoplasm interactions causing reproductive incompatibility between two populations of Tetranychus quercivorus Ehara et Gotoh (Acari: Tetranychidae). Heredity 74, 405414.CrossRefGoogle Scholar
Gutierrez, J. & Helle, W. (1985) Evolutionary changes in the Tetranychidae. pp. 91107in Helle, W. & Sabelis, M.W. (Eds) Spider mites, their biology, natural enemies and control. Amsterdam, Elsevier.Google Scholar
Hillis, D.M. & Dixon, M.T. (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. The Quarterly Review of Biology 66, 411453.CrossRefGoogle ScholarPubMed
Jukes, Y.H. & Cantor, C.R. (1969) Evolution of protein molecules. pp. 2132in Munro, H.N. (Ed.) Mammalian protein metabolism. New York, Academic Press.CrossRefGoogle Scholar
Navajas, M., Cotton, D., Kreiter, S. & Gutierrez, J. (1992) Molecular approach in spider mites (Acari: Tetranychidae): preliminary data on ribosomal DNA sequences. Experimental and Applied Acarology 15, 211218.CrossRefGoogle ScholarPubMed
Navajas, M., Gutierrez, J., Lagnel, J. & Boursot, P. (1996a) Mitochondrial cytochrome oxidase I in tetranychid mites: a comparison between molecular phylogeny and changes of morphological and life history traits. Bulletin of Entomological Research 86, 407417.CrossRefGoogle Scholar
Navajas, M., Lagnel, J., Gutierrez, J. & Boursot, P. (1996b) Compared patterns of intraspecific variation of mitochondrial COI and ribosomal ITS2 sequences in three species of mites (Acari: Tetranychidae) with contrasted colonization potentials. Molecular Ecology (submitted).Google Scholar
Oudemans, A.C. (1931) Acarologische Aanteekeningen CVIL. Entomologische Berichten Amsterdam 8, 221236.Google Scholar
Pritchard, A.E. & Baker, E.W. (1955) A revision of the spider mite family Tetranychidae. Pacific Coast Entomological Society. Memoirs Series, Vol. 2, San Francisco, 472.CrossRefGoogle Scholar
Wainstein, B.A. (1960) Tetranychid mites of Kazakhstan (with revision of families). 276 pp. Alma-Ata, Kazakhstan Gosudarstvennoe Izdatelsvo.Google Scholar