Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T15:03:33.076Z Has data issue: false hasContentIssue false

A comparison of sexual competitiveness and demographic traits of Anastrepha obliqua (Macquart) (Diptera: Tephritidae) among fruit-associated populations

Published online by Cambridge University Press:  23 July 2018

E. Hernández*
Affiliation:
Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur. Periférico Sur s/n, María Auxiliadora, C.P. 29290, San Cristóbal de las Casas, Chiapas, México Programa Moscafrut SAGARPA-SENASICA, Camino a los Cacaotales S/N, Metapa de Domínguez, Chiapas C. P. 30860, México
L. Ruiz-Montoya
Affiliation:
Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur. Periférico Sur s/n, María Auxiliadora, C.P. 29290, San Cristóbal de las Casas, Chiapas, México
J. Toledo
Affiliation:
Departamento de Agricultura Sociedad y Ambiente, El Colegio de la Frontera Sur, Carretera Antiguo Aereopuerto, C.P. 30700, Tapachula, Chiapas, México
P. Montoya
Affiliation:
Programa Moscafrut SAGARPA-SENASICA, Camino a los Cacaotales S/N, Metapa de Domínguez, Chiapas C. P. 30860, México
P. Liedo
Affiliation:
Departamento de Agricultura Sociedad y Ambiente, El Colegio de la Frontera Sur, Carretera Antiguo Aereopuerto, C.P. 30700, Tapachula, Chiapas, México
M. Aceituno-Medina
Affiliation:
Programa Moscafrut SAGARPA-SENASICA, Camino a los Cacaotales S/N, Metapa de Domínguez, Chiapas C. P. 30860, México
H. Perales
Affiliation:
Departamento de Agricultura Sociedad y Ambiente, El Colegio de la Frontera Sur, Carretera Antiguo Aereopuerto, C.P. 30700, Tapachula, Chiapas, México
*
*Author for correspondence Phone: +52-962-6435059 Fax: +52-962-6435059 E-mail: [email protected]

Abstract

The control of Anastrepha obliqua includes the sterilization of mass-reared insects grown in isolation in a constantly controlled environment. Through time, laboratory mass-reared colonies may produce flies with lower field performance. To recover the genetic variation and aptitude of mass-reared populations, wild insects are introduced into mass-reared colonies. Our aim in this study was to determine whether the host species from two localities influence the life history traits of A. obliqua. We collected flies as larvae from infested fruits of Spondias purpurea, S. mombin, Mangifera indica cv. piña’, and M. indica cv. ‘coche’ from two localities in Chiapas, Mexico. There were significant differences in the mating competitiveness of males collected from mango cv. ‘coche’ compared with mass-reared males. There were no differences in the mating propensity between flies from the two localities, even in the number of matings, when weight was considered as a covariable. The mass-reared strain showed the earliest age at first oviposition. The locality affected the longevity and oviposition period, and these influenced the birth rate, intrinsic rate of increase, finite rate of population increase, mean generation time, and doubling time. According to the demographic parameters, the population of S. mombin would allow artificial colonization in less time, considering that it has a high reproduction rate starting at an early age. Even in the propensity test, it had the highest number of matings. However, males with greater sexual competitiveness and longevity for colonization corresponded to those collected from S. purpurea.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aceituno-Medina, M., Rivera-Ciprian, J.P. & Hernández, E. (2017) Influence of pupation substrate on mass production and fitness of adult Anastrepha obliqua Macquart (Diptera: Tephritidae) for sterile insect technique application. Journal of Economic Entomology 110, 23972405. doi: 10.1093/jee/tox279.Google Scholar
Aluja, M. & Birke, A. (1993) Habitat use by adults of Anastrepha obliqua (Diptera: Tephritidae) in a mixed mango and tropical plum orchard. Annals of the Entomological Society of America 86, 799812.Google Scholar
Aluja, M. & Mangan, R.L. (2008) Fruit fly (Diptera: Tephritidae) host status determination: critical conceptual, methodological, and regulatory considerations. Annals of the Entomological Society of America 53, 473502.Google Scholar
Aluja, M., Guillén, J., De la Rosa, G., Cabrera, M., Celedonio, H., Liedo, P. & Hendrichs, J. (1987a) Natural host plant survey of the economically important fruit flies (Diptera: Tephritidae) of Chiapas, México. Florida Entomologist 70, 329338.Google Scholar
Aluja, M., Cabrera, M., Ríos, E., Guillén, J., Celedonio, H., Hendrichs, J. & Liedo, P. (1987b) A survey of the economically important fruit flies (Diptera: Tephritidae) present in Chiapas and a few other fruit growing regions in Mexico. Florida Entomologist 70, 320329.Google Scholar
Aluja, M., Celedonio-Hurtado, H., Liedo, P., Cabrera, M., Castillo, F., Guillén, J. & Ríos, E. (1996) Seasonal population fluctuations and ecological implications for management of Anastrepha fruit flies (Diptera: Tephritidae) in commercial mango orchards in Southern Mexico. Journal of Economic Entomology 89, 654667.Google Scholar
Artiaga-López, T., Hernández, E., Domínguez-Gordillo, J., Moreno, D.S. & Orozco-Dávila, D. (2004) Mass-production of Anastrepha obliqua at the Moscafrut Fruit Fly Facility, Mexico. pp. 389392 in Brian, B.N. (Ed.) Proceedings of the 6th International Symposium on Fruit Flies of Economic Importance. 6–10 May 2002, Isteg Sci. Publ. Irene, South Africa.Google Scholar
Birch, L.C. (1948) The intrinsic rate of natural increase of an insect population. Journal of Animal Ecology 17, 1526.Google Scholar
Boggs, C.L. & Freeman, K.L. (2005) Larval food limitation in butterflies: effects on adult resource allocation and fitness. Oecologia 144, 353361.Google Scholar
Boller, E. (1968) An artificial oviposition device for the European cherry fruit fly. Rhagoletis cerasi. Journal of Economic Entomology 61, 850852.Google Scholar
Burk, T. & Webb, J.C. (1983) Effect of male size on calling propensity, song parameters, and mating success in Caribbean fruit flies, Anastrepha suspensa (Loew.). Annals of the Entomological Society of America 76, 678682.Google Scholar
Calkins, C.O. & Parker, A.G. (2005) Sterile insect quality, pp. 269296 in Dyck, V.A., Hendrichs, J. & Robinson, A.S. (Eds.). Sterile Insect Technique, Principles and Practice in Area-Wide Integrated Pest Management. Springer, The Netherlands.Google Scholar
Carbonell-Capella, J.M., Buniowska, M., Barba, F.J., Esteve, M.J. & Frígola, A. (2014) Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: a review. Comprehensive Reviews in Food Science and Food Safety 13, 155171.Google Scholar
Carey, J.R. (1984) Host-specific demographic studies of the Mediterranean fruit fly Ceratitis capitata. Ecological Entomology 9, 261270.Google Scholar
Carey, J.R. (1993) Applied Demography for Biologists with Special Emphasis on Insects. New York, Oxford University Press.Google Scholar
Carey, J.R. & Vargas, R.I. (1985) Demographic analysis of insect mass rearing: a case study of three tephritids. Journal of Economic Entomology 78, 523527.Google Scholar
Celedonio-Hurtado, H., Liedo, P., Aluja, M. & Guillén, J. (1988) Demography of Anastrepha ludens, A. obliqua and A. serpentina (Diptera: Tephritidae) in Mexico. Florida Entomologist 71, 111120.Google Scholar
Churchill-Stanland, C., Stanland, R., Wong, T.T.Y., Tanaka, N., McInnis, D.O. & Dowell, R.V. (1986) Size as a factor in the mating propensity of Mediterranean fruit flies, Ceratitis capitata (Diptera: Tephritidae), in the laboratory. Journal of Economic Entomology 79, 614619.Google Scholar
Elson-Harris, M.M. (1988) Morphology of the immature stages of Dacus tryoni (Froggatt) (Diptera: Tephritidae). Australian Journal of Entomology 27, 9198.Google Scholar
Foote, D. & Carey, J.R. (1987) Comparative demography of a laboratory and a wild strain of the oriental fruit fly, Dacus dorsalis. Entomologia Experimentalis et Applicata 44, 263268.Google Scholar
Gilchrist, A.S. & Meats, A.W. (2014) An evaluation of outcrossing to improve mass-reared strains of the Queensland fruit fly Bactrocera tryoni. International Journal of Tropical Insect Science 34, S35S44.Google Scholar
Hafsi, A., Facon, B., Ravigné, V., Chiroleu, F., Quilici, S., Chermiti, B. & Duyck, P.F. (2016) Host plant range of a fruit fly community (Diptera: Tephritidae): does fruit composition influence larval performance? BMC Ecology 16, 40.Google Scholar
Hamilton, W.D. (1966) The moulding of senescence by natural selection. Journal of Theoretical Biology 12, 1245.Google Scholar
Helden, A.J., Dixon, A.F.G. & Carter, N. (1994) Environmental factors and morphological discrimination between spring and summer migrants of the grain aphid, Sitobion avenae (Homoptera: Aphididae). European Journal of Entomology 91, 2328.Google Scholar
Hernández, E., Toledo, J., Artiaga-López, T. & Flores, S. (2009) Demographic changes in Anastrepha obliqua (Diptera: Tephritidae) throughout the laboratory colonization process. Journal of Economic Entomology 102, 542–51.Google Scholar
Jaastad, G. (1998) Male mating success and body size in the European cherry fruit fly, Rhagoletis cerasi L. (Dipt., Tephritidae). Journal of Applied Entomology 122, 121124.Google Scholar
Kaspi, R., Mossinson, S., Drezner, T., Kamensky, B. & Yuval, B. (2002) Effects of larval diet on development rates and reproductive maturation of male and female Mediterranean fruit flies. Physiological Entomology 27, 2938.Google Scholar
Krainacker, D.A., Carey, J.R. & Vargas, R.I. (1987) Effect of larval host on life history traits of the Mediterranean fruit fly, Ceratitis capitata. Oecology 73, 583590.Google Scholar
Krainacker, D.A., Carey, J.R. & Vargas, R.I. (1989) Size-specific survival and fecundity for laboratory strains of two tephritid (Diptera: Tephritidae) species: implications for mass rearing. Journal of Economic Entomology 82, 104108.Google Scholar
Liedo, P. & Carey, J.R. (1994) Mass-rearing of Anastrepha (Diptera: Tephritidae) fruit flies: a demographic analysis. Journal of Economic Entomology 87, 176180.Google Scholar
Liedo, P., Salgado, S., Oropeza, A. & Toledo, J. (2007) Improving mating performance of mass-reared sterile Mediterranean fruit flies (Diptera: Tephritidae) through changes in adult holding conditions: demography and mating competitiveness. Florida Entomologist 90, 3340.Google Scholar
McInnis, D.O., Lance, D.R. & Jackson, C.G. (1996) Behavioral resistance to the Sterile Insect Technique by Mediterranean fruit fly (Dipetara: Tephritidae) in Hawaii. Annals of the Entomological Society of America 89, 739744.Google Scholar
Message, C.M. & Zucoloto, F.S. (1989) Effect of some artificial diets on egg production by Anastrepha obliqua. Revista Brasileira de Biologia 49, 699701.Google Scholar
Meza-Hernández, J.S., Hernández, E., Salvador-Figueroa, M. and Cruz-López, L. (2004) Sexual compatibility, mating performance and sex pheromone release of mass-reared and wild Anastrepha obliqua (Diptera: Tephritidae) under field-cage conditions. pp. 99104 in Barnes, B.N. (Ed.) Proceedings of the 6th International Symposium on Fruit Flies of Economic Importance. 6–10 May 2002, Isteg Sci. Publ. Irene, South Africa.Google Scholar
Miyatake, T. (1998) Genetic changes of life history and behavioral traits during mass-rearing in the melon fly, Bactrocera cucurbitae (Diptera: Tephritidae). Researches on Population Ecology 40, 301310.Google Scholar
Miyatake, T. & Shimizu, T. (1999) Genetic correlations between life-history and behavioral traits can cause reproductive isolation. Evolution 53, 201208.Google Scholar
Miyatake, T. & Yamagishi, M. (1992). Active quality control in mass reared melon flies, p. 201 in Howard-Kitto P., Kelleher R.F. & Ramesh G.V. (Eds.) Management of Insect Pests: Nuclear and Related Molecular and Genetic Techniques. Vienna, Austria, IAEA.Google Scholar
Mkiga, A. & Mwatawala, M.W. (2015) Developmental biology Zeugodacus cucurbitae (Diptera: Tephritidae) in three cucurbitaceous hosts at different temperature regimes. Journal of Insect Science 15(1), 160.Google Scholar
Moore, R.F., Dell, T.M. & Calkins, C.O. (1985) Quality assessment in laboratory insects. pp. 107135 in Sing, P. & Moore, R. F. (Eds) Handbook of Insect Rearing, Vol. 1. Amsterdam, Elsevier Science Publishers B.V.Google Scholar
Moreno, D.S., Ortega-Zaleta, D.A. & Mangan, R.L. (1997) Development of artificial larval diets for the West Indian fruit fly (Diptera: Tephritidae). Journal of Economic Entomology 90, 427434.Google Scholar
Ochieng-Odero, J.P.R. (1994) Does adaptation occur in insect rearing systems, or is it a case of selection, acclimatization and domestication? Insect Science and its Application 15, 17.Google Scholar
Orozco, D., Domínguez, J., Reyes, J., Villaseñor, A. & Gutiérrez, J.M. (2004) SIT and biological control of Anastrepha fruit flies in Mexico. pp. 245249 in Brian, B.N. (Ed.) Proceedings of the 6th International Symposium on Fruit Flies of Economic Importance. 6–10 May 2002, Isteg Sci. Publ. Irene, South Africa.Google Scholar
Orozco-Dávila, D., Hernández, R., Meza, S. & Domínguez, J. (2007) Sexual competitiveness and compatibility between mass-reared sterile flies and wild populations of Anastrepha ludens (Diptera: Tephritidae) from different regions in Mexico. Florida Entomologist 90, 1926.Google Scholar
Orozco-Dávila, D., Artiaga-López, T., Hernández, M.D.R., Domínguez, J. & Hernández, E. (2014) Anastrepha obliqua (Diptera: Tephritidae) mass-rearing: effect of relaxed colony management. International Journal of Tropical Insect Science 34, S19S27.Google Scholar
Orozco-Dávila, D., Quintero, L., Hernández, E., Solís, E., Artiaga, T., Hernández, R., Ortega, C. & Montoya, P. (2017) Mass rearing and sterile insect releases for the control of Anastrepha spp. pests in Mexico: a review. Entomologia Experimentalis et Applicata. Special Issue Sterile Insect Technique 164, 176187.Google Scholar
Papadopoulos, N.T. & Katsoyannos, B.I. (2004) Development of Ceratitis capitata (Diptera: Tephritidae) in three apple varieties in the laboratory. pp. 1922 in Brian, B.N. (Ed.) Proceedings of the 6th International Symposium on Fruit Flies of Economic Importance. 6–10 May 2002, Isteg Sci. Publ. Irene, South Africa.Google Scholar
Passos Roriz, A.K. & Joachim-Bravo, I.S. (2013) The relevance of age and nutritional status on the mating competitiveness of medfly males (Diptera: Tephritidae). Zoologia 30, 506512.Google Scholar
Quintero-Fong, L., Toledo, J., Ruiz, L., Rendón, P., Orozco-Dávila, D., Cruz, L. & Liedo, P. (2016) Selection by mating competitiveness improves the performance of Anastrepha ludens males of the genetic sexing strain Tapachula-7. Bulletin of Enomological Research 106, 624632.Google Scholar
Rauf, I., Ahmad, N., Rashdi, S.M., Ismail, M. & Khan, M.H. (2013) Laboratory studies on ovipositional preference of the peach fruit fly Bactrocera zonata (Saunders) (Diptera: Tephritidae) for different host fruits. African Journal of Agricultural Research 8, 13001303.Google Scholar
R Development Core Team (2014) R: A Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing. ISBN: 3-900051-07-0. Available online at http://www.Rproject.org/.Google Scholar
Rössler, Y. (1975) Reproductive differences between laboratory-reared and field-collected populations of the Mediterranean fruitfly, Ceratitis capitata. Annals of the Entomological Society of America 68, 987991.Google Scholar
Rull, J. & Barreda-Landa, A. (2007) Colonization of a hybrid strain to restore male Anastrepha ludens (Diptera: Tephritidae) mating competitiveness for sterile insect technique programs. Journal of Economic Entomology 100, 752758.Google Scholar
Rull, J., Brunel, O. & Mendez, M.E. (2005) Mass rearing history negatively affects matings success of male Anastrepha ludens (Diptera: Tephritidae) reared for sterile insect technique programs. Journal of Economic Entomology 98, 15101516.Google Scholar
Sanchez-Rosario, M., Pérez-Staples, D., Toledo, J., Valle-Mora, J. & Liedo, P. (2017) Artificial selection on mating competitiveness of Anastrepha ludens for sterile insect technique application. Entomologia Experimentalis et Applicata 162, 133147.Google Scholar
SAS Institute (2003) JMP 5.0.1 The Statistical Discovery Software. Cary, NC, USA, SAS Institute Inc.Google Scholar
Shelly, T.E. (2001) Outcrossing and the mating competitiveness of male Mediterranean fruit flies (Diptera: Tephritidae): results from the world's oldest mass-reared strain. Proceedings of the Hawaiian Entomological Society 35, 4954.Google Scholar
Singh, S.M. & Cunningham, T.K. (1981) Morphological and genetic differentiation in aphids (Aphididae). Canadian Entomologist 113, 539550.Google Scholar
Sugayama, R.L., Kovaleski, A., Liedo, P. & Malavasi, A. (1998) Colonization of a new fruit crop by Anastrepha fraterculus (Diptera: Tephritidae) in Brazil: a demographic analysis. Environmental Entomology 27, 642648.Google Scholar
Toledo, A.J. & Lara, V.J.R. (1996) Comparison of the biology of Anastrepha obliqua reared in mango (Mangifera indica L.) and in mombin (Spondias mombin) infested under field conditions. pp. 359362 in McPheron, B.A. & Steck, G.J. (Eds) Fruit Fly Pests: a World Assessment of Their Biology and Management. Delray Beach, FL, USA, St. Lucie Press.Google Scholar
Vargas, R.I. & Carey, J.R. (1989) Comparison of demographic parameters for wild and laboratory-adapted Mediterranean fruit fly (Diptera: Tephritidae). Annals of the Entomological Society of America 82, 5559.Google Scholar