Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T06:41:09.909Z Has data issue: false hasContentIssue false

Carbamate and organophosphate resistance in Culex pipiens L. (Diptera: Culicidae) in southern France and the significance of Est-3A

Published online by Cambridge University Press:  10 July 2009

R. J. Wood
Affiliation:
Department of Zoology, Manchester University, Manchester, UK
N. Pasteur
Affiliation:
Institut des Sciences de l'Evolution (LA 327), Laboratoire de Génétique, Université de Montpellier II, 34060 Montpellier, France
G. Sinégre
Affiliation:
Entente Interdépartementale pour la Démoustication, 34030, Montpellier, France

Abstract

Three French strains of Culex pipiens L. were compared at the fourth larval instar for tolerance to organophosphate and carbamate insecticides, with and without the addition of synergists (the oxidase inhibitors piperonyl butoxide and CGA 84708) (a propynyl compound) and the carboxylesterase inhibitors triphenyl phosphate (TPP) and S,S,S-tributyl phosphorotrithioate (TBPT). The S54 strain was resistant to all the organophosphates tested (chlorpyrifos, malathion, monocrotophos and profenofos) compared to the susceptible LA VIS strain but only slightly tolerant to the two carbamates (carbaryl and naphthyl phenylcarbamate). The MAURIN strain was resistant to all the insecticides, including the carbamates, at a higher level. The action of chlorpyrifos and malathion on S54 was very strongly synergised by TBPT, less strongly by TPP and not at all by piperonyl butoxide. In fact, resistance was enhanced by piperonyl butoxide, as was resistance to monocrotophos and profenofos by CGA 84708. No synergist had much effect on the MAURIN strain, although TPP slightly increased the toxicity of malathion, and piperonyl butoxide and CGA 84708 slightly increased the toxicity of carbaryl. The toxic effect of carbaryl was also increased by the addition of extra acetone. Electrophoretic studies showed that the carboxylesterase enzyme coded by gene Est-20.64 (which is in linkage disequilibrium withEst-3A and acts as a marker for it) was absent from LA VIS but present in the resistant strains; but, whereas S54 was monomorphic for the gene, MAURIN was polymorphic (frequency 0·5). It is concluded that organophosphate resistance in S54 was due to detoxification by carboxylesterase wherease organophosphate and carbamate resistance in MAURIN had a strong non-metabolic component, possibly an insensitive acetylcholinesterase.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Apperson, C. S. & Georghiou, G. P. (1975). Mechanisms of resistance to organophosphorus insecticides in Culex tarsalis.—J. econ. Ent. 68, 153157.CrossRefGoogle ScholarPubMed
Ayad, H. & Georghiou, G. P. (1975). Resistance to organophosphates and carbamates in Anopheles albimanus based on reduced sensitivity of acetylcholinesterase.—J. econ. Ent. 68, 295297.CrossRefGoogle ScholarPubMed
Curtis, C. F. & Feachem, R. G. (1981). Sanitation and Culex pipiens mosquitoes: a brief review.—J. trop. Med. Hyg. 84, 1725.Google Scholar
Curtis, C. F. & Pasteur, N. (1981). Organophosphate resistance in vector populations of the complex of Culex pipiens L. (Diptera: Culicidae).—Bull. ent. Res. 71, 153161.Google Scholar
de Stordeur, E. (1976). Esterases in the mosquito Culex pipiens pipiens L.: formal genetics and polymorphism of adult esterases.—Biochem. Genet. 14, 481493.Google Scholar
Dittrich, V., Luetkemeier, N. & Voss, G. (1979). Monocrotophos and profenofos: two organophosphates with a different mechanism of action in resistant races of Spodoptera littoralis.—J. econ. Ent. 72, 380384.CrossRefGoogle Scholar
Finney, D. J. (1971). Probit analysis.—3rd edn, 333 pp. Cambridge University Press.Google Scholar
Georghiou, G. P., Ariaratnam, V., Pasternak, M. E. & Lin, C. S. (1975). Organophosphorus multiresistance in Culex pipiens quinquefasciatus in California.—J. econ. Ent. 68, 461467.Google Scholar
Georghiou, G. P., Metcalf, R. L. & Gidden, F. E. (1966). Carbamate-resistance in mosquitos. Selection of Culex pipiens fatigans Wiedemann (= C. quinquefasciatus Say) for resistance to Baygon.—Bull. Wld Hlth Org. 35, 691708.Google Scholar
Georgriou, G. P. & Pasteur, N. (1978). Electrophoretic esterase patterns in insecticide-resistant and susceptible mosquitoes.—J. econ. Ent. 71, 201205.CrossRefGoogle Scholar
Georghiou, G. P. & Pasteur, N. (1980). Organophosphate resistance and esterase pattern in a natural population of the southern house mosquito from California.—J. econ. Ent. 73, 489492.CrossRefGoogle Scholar
Georghiou, G. P., Pasteur, N. & Hawley, M. K. (1980). Linkage relationships between organophosphate resistance and a highly active esterase-B in Culex quinquefasciatus from California.—J. econ. Ent. 73, 301305.CrossRefGoogle Scholar
Hama, H. (1983). Resistance to insecticides due to reduced sensitivity of acetyicholinesterase.—pp. 299331in Georghiou, G. P. & Saito, T. (Eds.). Pest resistance to pesticides.—809 pp. New York, Plenum Press.CrossRefGoogle Scholar
Hemingway, J. (1982). The biochemical nature of malathion resistance in Anopheles stephensi from Pakistan.—Pestic. Biochem. & Physiol. 17, 149155.CrossRefGoogle Scholar
Hemingway, J. & Georghiou, G. P. (1983). Studies on the acetylcholinesterase of Anopheles albimanus resistant and susceptible to organophosphate and carbamate insecticides.—Pestic. Biochem. & Physiol. 19, 167171.CrossRefGoogle Scholar
Litchfield, J. J. Jr, & Wilcoxon, F. (1949). A simplified method of evaluating dose-effect experiments.—J. Pharmac. exp. Ther. 96, 99113.Google Scholar
Nakatsugawa, T. & Morelli, M. A. (1976). Microsomal oxidation and insecticide metabolism.—pp. 61114in Wilkinson, C. F. (Ed.). Insecticide biochemistry and physiolism.—768 pp. New York, Plenum Press.Google Scholar
Pasteur, N. (1977). Recherches de génétique chez Culex pipiens pipiens L. Polymorphisme enzymatique, autogénèse et résistance aux insecticides organophosphorés.—170 pp. Thèse de Doctorat d'Etat, Université des Sciences et Techniques du Languedoc, Montpellier.Google Scholar
Pasteur, N., Georghiou, G. P. & Iseki, A. (in press). Variation in organophosphate resistance and esterase activity in Culex quinquefasciatus Say from California.—Génétique, Sèlection et Evolution.Google Scholar
Pasteur, N., Georghiou, G. P. & Ranasinghe, L. E. (1980). Variations in the degree of homozygous resistance to organophosphorus insecticides in Culex quinquefasciatus Say.—pp. 6973in Grant C. D. (Ed.). Proceedings and papers of the Forty-eighth Annual Conference of the California Mosquito and Vector Control Association, Inc.January 20–23, 1980.Quality Inn, Anaheim, California.138 pp. Visalia, California, CMVCA Press.Google Scholar
Pasteur, N., Iseki, A. & Georghiou, G. P. (1981). Genetic and biochemical studies of the highly active esterases A' and B associated with organophosphate resistance in mosquitoes of the Culex pipiens complex.—Biochem. Genet. 19, 909919.Google Scholar
Pasteur, N. & Sinègre, G. (1975). Esterase polymorphism and sensitivity to Dursban organophosphorus insecticide in Culex pipiens pipiens populations.—Biochem. Genet. 13, 789803.CrossRefGoogle ScholarPubMed
Pasteur, N. & Sinègre, G. (1978). Chlorpyrifos (Dursban) resistance in Culex pipiens pipiens L. from southern France: inheritance and linkage.—Experientia 34, 709711.CrossRefGoogle Scholar
Pasteur, N., Sinègre, G. & Gabinaud, A. (1981 b). Est-2 and Est-3 polymorphisms in Culex pipiens L. from southern France in relation to organophosphate resistance.—Biochem. Genet. 19, 499508.Google Scholar
Poulik, M. S. (1957). Starch electrophoresis in a discontinuous system of buffers.—Nature, Lond. 180, 1477.CrossRefGoogle Scholar
Ranasinghe, L. E. & Georghiou, G. P. (1979). Comparative modification of insecticide-resistance spectrum of Culex pipiens fatigans Wied. by selection with temephos and temephos/synergist combinations.—Pestic. Sci. 10, 502508.CrossRefGoogle Scholar
Salam, A. Z. E. & Pinsker, W. (1981). Effects of selection for resistance to organophosphorus insecticides on two esterase loci in Drosophila melanogaster.—Genetica 55, 1114.Google Scholar
Selander, R. K., Smith, M. H., Yang, S. Y., Johnson, W. E. & Gentry, J. B. (1971). Biochemical polymorphism in the genus Peromyscus. 1. Variation of the old field mouse (Peromyscus polionotus). Studies in genetics.—Univ. Tex. Publs no. 7103, 4990.Google Scholar
Shrivastava, S. P., Georghiou, G. P. & Fukuto, T. R. (1971). Metabolism of N-methylcarbamate insecticides by mosquito larval enzyme system requiring NADPH2.—Entomologia exp. appl. 14, 333348.CrossRefGoogle Scholar
Shrivastava, S. P., Georghiou, G. P., Metcalf, R. L. & Fukuto, T. R. (1970). Carbamate resistance in mosquitos: the metabolism of propoxur by susceptible and resistant larvae of Culex pipiens fatigans.—Bull. Wld Hlth Org. 42, 931942.Google Scholar
Sinègre, G., Jullien, J. L. & Crespo, O. (1976). Résistance de certaines populations de Culex pipiens (L.) au chlorpyrifos (Dursban) en Languedoc-Roussillon (France).—Cah. ORSTOM, Sér. Entomol. méd. Parasitol. 14, 4959.Google Scholar
Sinègre, G., Jullien, J. L. & Gaven, B. (1977 a). Acquisition progressive de la résistance au chlorpyrifos chez les larves de Culex pipiens (L.) dans le midi de la France.—Parassitologia 19, 7994.Google Scholar
Sinègre, G., Gaven, B. & Jullien, J. L. (1977 b). Activité comparée de 31 insecticides sur des larves de Culex pipiens (L.) sensibles et résistantes au chlorpyrifos dans le midi de la France.—Parassitologia 19, 6372.Google Scholar
Sinègre, G., Gaven, B. & Jullien, J. L. (1979). Évaluation de l'activité larvicide de Bacillus thuringiensis var. israelensis sur les culicidés—performances comparées des formulations commerciales—impact du produit sur la faune non cible.—23 pp. Montpellier, Entente Interdépartementale pour la Démoustication du Littoral Méditerranéen Français (Document E.I.D. no. 40).Google Scholar
Sinègre, G., Jullien, J. L. & Gaven, B. (1980 a). Évaluation préliminaire des potentialités de la perméthrine dans la lutte antilarvaire contre les moustiques dans le sud de la France.—Cah. ORSTOM, Sér. Entomol. méd. Parasitol. 18, 195199.Google Scholar
Sinègre, G., Jullien, J. L., Gaven, B. & Crespo, O. (1980 b). Action larvicide et ovicide du diflubenzuron sur trois espèces de culicidés.—Parassitologia 22, 187198.Google Scholar
Tadano, T. (1969). Genetical linkage of malathion-resistance in Culex pipiens L.—Jap. J. exp. Med. 39, 1316.Google Scholar
Tadano, T. (1970 a). Genetics of cross-resistance to organophosphates, Abate, fenitrothion and malathion in larvae of Culex pipiens pallens Coquillet.—Jap. J. exp. Med. 40, 5966.Google Scholar
Tadano, T. (1970 b). Recombination values between the white eye and factors for resistance to dieldrin, Abate, fenthion and fenitrothion in larvae of Culex pipiens pallens Coquillett.—Jap. J. sanit. Zool. 21, 156160.Google Scholar
Tallarida, R. J. & Murray, R. B. (1981). Manual of pharmacologic calculations with computer programs.—150 pp. Berlin, Springer-Verlag.CrossRefGoogle Scholar
Villani, F., White, G. B., Curtis, C. F. & Miles, S. J. (1983). Inheritance and activity of some esterases associated with organophosphate resistance in mosquitoes of the complex of Culex pipiens L. (Diptera: Culicidae).—Bull. ent. Res. 73, 153170.CrossRefGoogle Scholar
Yasutomi, K. (1970). Studies on organophosphate-resistance and esterase activity in the mosquitoes of the Culex pipiens group. I.—Jap. J. sanit. Zool. 21, 4145.CrossRefGoogle Scholar
White, R. J. & White, R. M. (1981). Some numerical methods for the study of genetic changes.—pp. 295342in Bishop, J. A. & Cook, L. M. (Eds.). Genetic consequences of man made change.—409 pp. London, Academic Press.Google Scholar