Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T05:43:54.211Z Has data issue: false hasContentIssue false

Biochemical studies of amylase, lipase and protease in Callosobruchus maculatus (Coleoptera: Chrysomelidae) populations fed with Vigna unguiculata grain cultivated with diazotrophic bacteria strains

Published online by Cambridge University Press:  09 May 2017

L.B. Silva*
Affiliation:
Graduate Program in Agronomy-Crop Science, Federal University of Piaui – Cinobelina Elvas Campus, Municipal Highway Bom Jesus – Viana, Km 03 Bom Jesus, PI 64900-000, Brazil
É.B. Torres
Affiliation:
Graduate Program in Agronomy-Crop Science, Federal University of Piaui – Cinobelina Elvas Campus, Municipal Highway Bom Jesus – Viana, Km 03 Bom Jesus, PI 64900-000, Brazil
R.A.S. Nóbrega
Affiliation:
Federal University of Recôncavo da Bahia (UFRB), Center for Agrarian, Environmental and Biological Sciences (CCAAB), Rua Rui Barbosa 710, Centro, Cruz das Almas, BA, Brazil
G.N. Lopes
Affiliation:
Graduate Program in Agronomy-Crop Science, Federal University of Piaui – Cinobelina Elvas Campus, Municipal Highway Bom Jesus – Viana, Km 03 Bom Jesus, PI 64900-000, Brazil
R.F. Vogado
Affiliation:
Graduate Program in Agronomy-Crop Science, Federal University of Piaui – Cinobelina Elvas Campus, Municipal Highway Bom Jesus – Viana, Km 03 Bom Jesus, PI 64900-000, Brazil
B.E. Pavan
Affiliation:
Departament of Plant Science Socio-Economics and Food Technology of Ilha Solteira UNESP-FEIS Faculty of Engineering, State University of São Paulo, P.O. Box 31, Ilha Solteira, SP 15385-000, Brazil
P.I. Fernandes-Junior
Affiliation:
Embrapa Semiarido, Petrolina, Pernambuco, Brazil
*
*Author for correspondence Phone: +55 89 9992-43847 Fax: +55 89 3562-1929 E-mail: [email protected]

Abstract

The objective of this study was to evaluate the enzymatic activity of homogenates of insects fed on grain of cowpea, Vigna unguiculata (L.), cultivars grown with different nitrogen sources. For the experiment we used aliquots of the homogenate of 100 unsexed adult insects, emerged from 10 g of grain obtained from four cowpea cultivars: ‘BRS Acauã’, ‘BRS Carijó’, ‘BRS Pujante’, and ‘BRS Tapaihum’ grown under different regimes of nitrogen sources: mineral fertilizer, inoculation with strains of diazotrophs (BR 3267, BR 3262, BR 3299; INPA 03–11B, 03–84 UFLA, as well as the control (with soil nitrogen). The parameters evaluated were enzymatic activities of insect protease, amylase and lipase and the starch content of the grains. There were differences in the enzymatic activity of amylase, lipase and protease of insect homogenate according to the food source. A lower activity of the enzyme amylase from C. maculatus homogenate was observed when insects were fed grain of the cultivar BRS Carijó. A lower activity of lipase enzyme from C. maculatus homogenate was observed when the insects fed on grain from the interaction of the cultivar Tapaihum inoculated with BR 3262 diazotrophs. The lowest proteolytic activity was observed in homogenate of insects fed on interaction of ‘BRS Carijó’ inoculated with BR 3262 diazotrophs. Starch content correlated positively with the amylase activity of C. maculatus homogenate. The cultivar BRS Carijó had a different behavior from the other cultivars, according to the cluster analysis.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida, F.A.C., Almeida, A.S., Santos, N.R., Gomes, J.P. & Araújo, M.E.R. (2005) Efeitos de extratos alcoólicos de plantas sobre o caruncho do feijão vigna (Callosobruchus maculatus). Revista Brasileira de Engenharia Agrícola e Ambiental 9, 585590.Google Scholar
Almeida, A.L.G., Alcântara, R.M.C.M., Nóbrega, R.S.A., Leite, L.F.C., Silva, J.A.L. & Nóbrega, J.C.A. (2010) Produtividade do feijão caupi cv. BR 17 Gurguéia inoculado com bactérias diazotróficas simbióticas no Piauí. Revista Brasileira de Ciências Agrárias 5, 364–336.Google Scholar
Araújo, R.A., Guedes, R.N.C., Oliveira, M.G.A. & Ferreira, G.H. (2008) Enhanced activity of carbohydrate and lipid-metabolizing enzymes in insecticide-resistant populations of the maize weevil, Sitophilus zeamais. Bulletin of Entomological Research 98, 417424.Google Scholar
Arrese, E.L. & Soulages, J.L. (2010) Insect fat body: energy, metabolism, and regulation. Annual Review of Entomology 55, 207225.Google Scholar
Benhalima, H., Chaudhry, M.Q., Mills, K.A. & Price, N.R. (2004) Phosphine resistance in stored-product insects collected from various grain storage facilities in Marocco. Journal of Stored Products Research 40, 241249.Google Scholar
Boyer, S., Zhang, H. & Lempérière, G. (2012) A review of control methods and resistance mechanisms in stored-product insects. Bulletin of Entomological Research 102, 20132229.Google Scholar
Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.Google Scholar
Cheng, W., Lei, J., Fox, C.W., Johnston, J.S. & Zhu-Salzman, K. (2015) Comparison of life history and genetic properties of cowpea Bruchid strains and their response to hypoxia. Journal of Insect Physiology 75, 511.Google Scholar
Chinma, C.E., Emelife, I.G. & Alemede, I.C. (2008) Physicochemical and functional properties of some Nigerian cowpea varieties. Pakistan Journal of Nutrition 7, 186190.Google Scholar
Costa, E.M., Nóbrega, R.S.A., Martins, L.V., Amaral, F.H.C. & Moreira, F.M.S. (2011) Nodulação e produtividade de Vigna unguiculata (L.) Walp. por cepas de rizóbio em Bom Jesus, PI. Revista Ciência Agronômica 42, 17.Google Scholar
Cruz, C.D. (2006) Programa GENES, análise multivariada e simulações. Viçosa-MG, UFV, 175p.Google Scholar
De Leo, F., Bottino, M.B., Ceci, L.R., Gallerani, R. & Jouanin, L. (2001) Effects of a mustard trypsin inhibitor expressed in different plants on three lepidopteran pests. Insect Biochemistry and Molecular Biology 31, 593602.Google Scholar
Ferreira, L.V.M., Nóbrega, R.S.A., Nóbrega, J.C.A., Aguiar, F.L., Moreira, F.M.S. & Pacheco, L.P. (2013) Biological nitrogen fixation in production of Vigna unguiculata (L.) Walp, Family Farming in Piauí, Brazil. Journal of Agricultural Science 5, 153160.Google Scholar
Guedes, R.N.C., Oliveira, E.E.; Guedes, N.M.P., Ribeiro, B. & Serrão, J.E. (2006) Cost and mitigation of insecticide resistance in the maize weevil, Sitophilus zeamais. Physiological Entomology 31, 3038.Google Scholar
Guyton, A.C. & Hall, J.E. (1996) Textbook of Medical Physiology. 9th edn, Philadelphia, W.B. Saunders Company, 1116p.Google Scholar
Hendrix, D.L. (1993) Rapid extraction and analysis of nonstructural carbohydrates in plant tissues. Crop Science 33, 13061311.Google Scholar
Ishimoto, M. & Chrispeels, M.J. (1996) Protective mechanism of the Mexican bean weevil against high levels of α-amylase inhibitor in the common bean. Plant Physiology 111, 393401.Google Scholar
Ishimoto, M. & Kitamura, K. (1989) Growth inhibitory effects of an α-amylase inhibitor from kidney bean, Phaseolus vulgaris (L.) on three species of bruchids (Coleoptera: Bruchidae). Applied Entomology and Zoology 24, 281286.Google Scholar
Lacerda, A.M., Moreira, F.M.S., Andrade, M.J.B. & Soares, A.L.L. (2004) Efeito de estirpes de rizóbio sobre a nodulação e produtividade do feijão caupi. Revista Ceres, 51, 6782.Google Scholar
Lehninger, A.I., Nelson, D.I. & Cox, M.M. (2000) Principles of Biochemistry. 3rd edon, New York, Worth Publishers Inc., 1200p.Google Scholar
Luca, F., Perry, G.H. & Di Rienzo, A. (2010) Evolutionary adaptations to dietary changes. Annual Review of Nutrition 30, 291314.Google Scholar
Marinho, R.C.N., Nóbrega, R.S.A., Zilli, J.É., Xavier, G.R., Santos, C.A.F., Aidar, S.T., Martins, L.M.V. & Fernandes-Júnior, P.I. (2014) Field performance of new cowpea cultivars inoculated with eficiente nitrogen-fixing rhizobial strains in the Brazilian Semiarid. Pesquisa Agropecuária Brasileira 49, 395402.Google Scholar
Mendiola-Olaya, E., Valencia-Jiménez, A., Valdés-Rodríguez, S., Délano-Frier, J. & Blanco-Labra, A. (2000) Digestive amylase from the larger grain borer, Prostephanus truncatus. Comparative Biochemistry and Physiology 126, 425433.Google Scholar
Miller, GL. (1959) Use of dinitritosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31, 426442.Google Scholar
Moghadam, N.N., Holmstrup, M., Manenti, T., Mouridsen, M.B., Pertoldi, C. & Loeschcke, V. (2015) The role of storage lipids in the relation between fecundity, locomotor activity, and lifespan of drosophila melanogaster longevity-selected and control lines. PLoS ONE 10, 118.Google Scholar
Ndakidemi, P.A. & Dakora, F.D. (2003) Legume seed flavonoids and nitrogenous metabolites as signals and protectants in early seedling development. Functional Plant Biology, 30, 729745.Google Scholar
Ndidi, U.S., Ndidi, C.U., Olagunju, A., Muhammad, A., Billy, F.G. & Okpe, O. (2014) Proximate, antinutrients and mineral composition of raw and processed (Boiled and Roasted) Sphenostylis stenocarpa Seeds from Southern Kaduna, Northwest Nigeria. ISRN Nutrition 280837, 19.Google Scholar
Park, J.H. & Keeley, L.L. (1996) Calcium-dependent action of hypertrehalosemic hormone on activation of glycogen phosphorilase in cockroach fat body. Molecular and Cellular Endocrinology 116, 199205.Google Scholar
Parra, J.R.P., Panizzi, A.R. & Haddad, M.L. 2009. Índices nutricionais para medir o consumo e utilização de alimentos por insetos. pp. 3778 in Panizzi, A.R., Parra, J.R. (Eds). Biotecnologia e nutrição de insetos. Base para manejo integrado de pragas. Embrapa informação tecnológica, Brasília, DF.Google Scholar
SAS Institute. (2002). SAS User's Manual. SAS Institute, Cary.Google Scholar
Silva, L.B., Carvalho, G.S., Mancin, A.C., Silva, L.S., Nóbrega, R.S.A., Pavan, B.E., Maggioni, K. & Costa, E.M. (2014) Brehavior of Callosobruchus maculatus populations fed with Vigna ungiculata grain cultivated with diazotrophic bacteria strains. Journal of Entomology 11(3), 111126.Google Scholar
Soares, A.L.L., Pereira, J.P.A.R., Ferreira, P.A.A., Vale, H.M.M., Lima, A.S., Andrade, M.J.B. & Moreira, F.M.S. (2006) Eficiência agronômica de rizóbios selecionados e diversidade de populações nativas nodulíferas em Perdões (MG). I – caupi. Revista Brasileira de Ciência do Solo 30, 795802.Google Scholar
Sousa, A.H., Maracajá, P.B., Silva, R.M.A., Moura, A.M.N. & Andrade, W.G. (2005) Bioactivity of vegetal powders against Callosobruchus maculatus (Coleoptera: Bruchidae) in caupi bean and seed physiological analysis. Revista de Biologia e Ciências da Terra 5, 15195228.Google Scholar
Tang, D., Dong, Y., Ren, H., Li, L. & He, C. (2014) A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chemistry Central Journal 8, 19.Google Scholar
Tavares, M.A.G.C. & Vendramim, J.D. (2005) Bioatividade da Erva-de-Santa-Maria, Chenopodium ambrosoides L., sobre Sitophilus zeamais Mots. (Coleoptera: Curculionidae). Neotropical Entomology 34, 319323.Google Scholar
Tolmasky, D.S., Rabossi, A. & Quesada-Allué, L.A. (2001) Synthesis and mobilization of glycogen during metamorphosis of the medfly Ceratitis capitata. Archives of Biochemistry and Biophysics 392, 3847.Google Scholar
Titarenko, E., Chrispeels, M.J. (2000) cDNA cloning, biochemical characterization and inhibition by plant inhibitors of the a-amylases of the Western corn rootworm, Diabrotica virgifera virgifera. Insect Biochemistry and Molecular Biology, Oxon 30, 979990.Google Scholar
Wang, J., Li, X., Xia, X., Li, H., Liu, J., Li, Q.X., Li, J. & Xu, T. (2014) Extraction, purification, and characterization of a trypsin inhibitor from cowpea seeds (Vigna unguiculata). Preparative Biochemistry and Biotechnology 44, 115.Google Scholar
Willmer, P., Stone, G. & Johnston, I. (2005) Environmental Physiology of Animals. 2nd edn. Blackwell Publishing, Malden, MA. 754p.Google Scholar
Zavala, J.A., Patankar, A.G., Gase, K., Hui, D. & Baldwin, I.T. (2004) Manipulation of endogenous trypsin proteinase inhibitor production in Nicotiana attenuate demonstrates their function as antiherbivore defenses. Plant Physiology 134, 11811190.Google Scholar