Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-22T08:04:10.390Z Has data issue: false hasContentIssue false

Associative nitrogen fixation, C4 photosynthesis, and the evolution of spittlebugs (Hemiptera: Cercopidae) as major pests of neotropical sugarcane and forage grasses

Published online by Cambridge University Press:  09 March 2007

V. Thompson*
Affiliation:
School of Science and Mathematics, Roosevelt University, 430 S. Michigan Avenue, Chicago, Illinois 60605, USA
*
*Fax: 312 341 2013 E-mail: [email protected]

Abstract

Neotropical grass-feeding spittlebugs of several genera are important pests of pasture grasses from the southeastern USA to northern Argentina, and of sugarcane from southern Mexico to southern Brazil, causing estimated reductions of up to 70% in yield and estimated monetary losses of US $840–2100 million annually. With few exceptions, the species badly damaged by these spittlebugs are introduced C4 grasses that exhibit associative nitrogen fixation. This study synthesizes evidence that the pest status of many tropical and subtropical grass-feeding spittlebugs is linked to associative N-fixation in their C4 hosts. Recognition that associative N-fixation is a major factor in spittlebug host preferences should deepen understanding of spittlebug agricultural ecology and facilitate efforts to combat spittlebug pests. In particular, spittlebugs should be susceptible to manipulation of xylem transport solutes. However, reduction of nitrate fertilizer rates, increase in ammonium fertilizer rates, or enhancement of associative N-fixation as a consequence of genetic engineering could make hosts more susceptible to spittlebug attack. Because of their predilection for C4 grasses, spittlebugs present a clear counterexample to the hypothesis that herbivores prefer C3 plants to C4 plants. Finally, it appears that declines in atmospheric carbon dioxide levels during recent geological history promoted the proliferation of C4 grasses. This, compounded by human agricultural activities, has driven an ecological and evolutionary radiation of grass-feeding spittlebugs that presents continuing opportunities for the evolution of spittlebug pests.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbadie, L., Mariotti, A., Menaut, J.-C. (1992) Independence of savanna grasses from soil organic matter for their nitrogen supply. Ecology 73, 608613.Google Scholar
Adjei, M.B. (1999) Susceptibility of pasture grasses to insect pests in South Florida. Florida Cattleman and Livestock Journal 63, 69.Google Scholar
Ajayi, O. & Oboite, F.A. (1999) Importance of spittle bugs, Locris rubens (Erichson) and Poophilus costalis (Walker) on sorghum in West and Central Africa, with emphasis on Nigeria. Annals of Applied Biology 136, 914.Google Scholar
Andrews, M. (1986) The partitioning of nitrate assimilation between root and shoot of higher plants. Plant, Cell and Environment 9, 511519.Google Scholar
Baker, D.D. & Schwintzer, C.R. (1990) Introduction. pp. 113in Schwintzer, C.R. & Tjepkema, J.D. (Eds) The biology of Frankia and actinorhizal plants. New York, Academic Press.Google Scholar
Baldani, J.I., Caruso, L., Baldani, V.L.D., Goi, S.R.Döbereiner, J. (1997) Recent advances in BNF with non-legume plants. Soil Biology and Biochemistry 29, 911922.Google Scholar
Baldani, J.I., Reis, V.M., Baldani, V.L.D.Döbereiner, J. (2002) A brief history of nitrogen fixation in sugarcane–reasons for success in Brazil. Functional Plant Biology 29, 417423.CrossRefGoogle Scholar
Barkman, J. & Schwintzer, C.R. (1998) Rapid N2 fixation in pines? Results of a Maine field study. Ecology 79, 14531457.CrossRefGoogle Scholar
Barrientos, A., Herrera, R.S., Dorta, N. & Mora, C. (1988) Evaluación de las pérdidas en el rendimiento y calidad de Cynodon dactylon vc Coast cross No. 1 provocadas por Monecphora bicincta fraterna (Uhler). Revista Cubana de Ciencia Agrícola 22, 303307.Google Scholar
Biggs, I.M., Stewart, G.R., Wilson, J.R. & Critchley, C. (2002) 15N natural abundance studies in Australian commercial sugarcane. Plant and Soil 238, 2130.CrossRefGoogle Scholar
Boddey, R.M. & Victoria, R.L. (1986) Estimation of biological nitrogen fixation associated with Brachiaria and Paspalum grasses using 15N labelled organic matter and fertilizer. Plant and Soil 90, 265292.CrossRefGoogle Scholar
Boddey, R.M., Rao, I.M. & Thomas, R.J. (1996) Nutrient cycling and environmental impact of Brachiaria pastures. pp. 7286in Miles, J.W., Maass, B.L. & do Valle, C.B. (Eds) Brachiaria: biology, agronomy, and improvement. Cali, Colombia, CIAT.Google Scholar
Botelho, W., Reis, P.R., da & Fonseca, D.M. (1985) Efeito da carga animal sobre a população da cigarrinha, Zulia entreriana (Berg, 1879) (Homoptera-Cercopidae), em pastagem de capim-‘buffel’, Cenchrus ciliaris L. Anais da Sociedade Entomologica do Brasil 14, 205214.Google Scholar
Brodbeck, B.V., Andersen, P.C. & Mizell, R.F. (1999) Effects of total dietary nitrogen and nitrogen form on the development of xylophagous leafhoppers. Archives of Insect Biochemistry and Physiology 42, 3750.Google Scholar
Brooks, G.L. & Whittaker, J.B. (1999) Responses of three generations of a xylem-feeding insect, Neophilaenus lineatus (Homoptera) to elevated CO2. Global Change Biology 5, 395401.Google Scholar
CAB International (2001) Sugarcane froghopper IPM in Trinidad. pp. 67 in CAB International Annual Review 2000/01.Google Scholar
Cardona, C., Miles, J.W. & Sotelo, G. (1999) An improved methodology for massive screening of Brachiaria spp. genotypes for resistance to Aeneolamia varia (Homoptera: Cercopidae). Journal of Economic Entomology 92, 490496.CrossRefGoogle Scholar
Caswell, H., Reed, F., Stephenson, S.N. & Werner, P. (1973) Photosynthetic pathways and selective herbivory: a hypothesis. American Naturalist 107, 465480.Google Scholar
Cerling, T.E. (1999) Paleorecords of C4 plants and ecosystems. pp. 445469in Sage, R.F. & Monson, R.K. (Eds) C4 plant biology. New York, Academic Press.CrossRefGoogle Scholar
Cerling, T.E., Ehleringer, J.R. & Harris, J.M. (1998) Carbon dioxide starvation, the development of C4 ecosystems, and mammalian evolution. Philosophical Transactions of the Royal Society, London, B 353, 159171.CrossRefGoogle ScholarPubMed
Chalk, P.M. (1991) The contribution of associative and symbiotic nitrogen fixation to the nitrogen nutrition of non-legumes. Plant and Soil 132, 2939.CrossRefGoogle Scholar
Chelius, M.K. & Triplett, E.W. (2000) Immunolocalization of dinitrogenase reductase produced by Klebsiella pneunoniae in association with Zea mays L. Applied and Environmental Microbiology 66, 783787.Google Scholar
CIAT (2000) Annual Report Project IP-5 Tropical Grasses and Legumes: optimizing genetic diversity for multipurpose use. 190 pp. Cali, Colombia, CIAT.Google Scholar
Clifton-Brown, J.C. & Lewandowski, I. (2002) Screening Miscanthus genotypes in field trials to optimise biomass yield and quality in southern Germany. European Journal of Agronomy 16, 97110.CrossRefGoogle Scholar
C.M. (1997) Saving sorghum by foiling the wicked witchweed. Science 277, 1040.Google Scholar
Collatz, G.J., Berry, J.A. & Clark, J.S. (1998) Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future. Oecologia 114, 441454.Google Scholar
Coronado, P.R., Sosa, E.E., (1966) Campaña contra la mosca pinta y la escama algodonosa de los pastos. Fitófilo 50, 552.Google Scholar
Crush, J.R. (1994) Elevated atmospheric CO2 concentration and rhizosphere nitrogen fixation in four forage plants. New Zealand Journal of Agricultural Research 37, 455463.Google Scholar
Dakora, F.D. & Drake, B.G. (2000) Elevated CO2 stimulates associative N2 fixation in a C3 plant of the Chesapeake Bay wetland. Plant, Cell and Environment 23, 943953.Google Scholar
Dart, P.J. (1986) Nitrogen fixation associated with non-legumes in agriculture. Plant and Soil 303, 303334.CrossRefGoogle Scholar
Díaz, B.R. (1981) Chemical control of the sugarcane froghopper, Aeneolamia sp. Proceedings, Second Inter-American Sugar Cane Seminar, Insect and Rodent Pests, October 6 and 7, 1981. Organizing Committee, Inter-American Sugar Cane Seminar, Miami, Florida.Google Scholar
Dinardo-Miranda, L.L., Figueiredo, P., Landell, M.G.A., Ferreira, J.M.G., de Carvalho, E.P.A.M. (1999) Danos causados pelas cigarrinhas das raízes, Mahanarva fimbriolata, a diversos genótipos de cana-de-açúcar. STAB, Açúcar, Álcool e Subprodutos, Piracicaba 17 5 4852.Google Scholar
Döbereiner, J. (1992) Recent changes in concepts of plant bacteria interactions: endophytic N2 fixing bacteria. Ciência e Cultura 44, 310313.Google Scholar
Dunn, J.P., Summerfield, C.J. & Johnson, M. (2002) Distribution, seasonal cycle, host plant records, and habitat evaluation of a Michigan threatened insect: the Great Plains spittlebug, Lepyronia gibbosa (Homoptera: Cercopidae). Great Lakes Entomologist 35, 121129.Google Scholar
Eckert, B., Weber, O.B., Kirchhof, G., Halbritter, A., Stoffels, M. & Hartmann, A. (2001) Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4 -grass Miscanthus. International Journal of Systematic and Evolutionary Microbiology 51, 1726.CrossRefGoogle Scholar
Estrada, P., Mavingui, P., Cournoyer, B., Fontaine, F., Balandreau, J. & Caballero-Mellado, J. (2002) A N2 -fixing endophytic Burkholderia sp. associated with maize plants cultivated in Mexico. Canadian Journal of Microbiology 48, 285294.CrossRefGoogle ScholarPubMed
Fagan, E.B. & Kuitert, L.C. (1969) Biology of the two-lined spittlebug, Prosapia bicincta, on Florida pastures (Homoptera: Cercopidae). Florida Entomologist 52, 199206.Google Scholar
Faria, V.P., de Silva, S.C., da & Corsi, M. (1998) Potencial e perspectivas do pastejo em capim-elefante. Informe Agropecuário, Belo Horizonte 19 192 513.Google Scholar
Ferrufino, A. & Lapointe, S.L. (1989) Host plant resistance in Brachiaria grasses to the spittlebug Zulia colombiana. Entomologia Experimentalis et Applicata 51, 155162.CrossRefGoogle Scholar
Fewkes, D.W. (1969) The biology of sugarcane froghoppers. pp. 283307in Williams, J.R., Metcalfe, J.R., Mungomery, R.W. & Mathes, R.(Eds) Pests of sugar cane. Amsterdam, Elsevier.Google Scholar
Fewkes, D.W., Hagley, E.A.C. & Buxo, D.A. (1965) Yield losses in sugarcane due to froghopper infestations. pp. 364372 in Tate and Lyle, Central Agricultural Research Station Annual Report, 1965. Carapichaima, Trinidad and Tobago, Tate and Lyle.Google Scholar
Fielding, C.A., Whitaker, J.B., Butterfield, J.E.L. & Coulson, J.C. (1999) Predicting responses to climate change: the effect of altitude and latitude on the phenology of the spittlebug Neophilaenus lineatus. Functional Ecology 13 Suppl. 16573.CrossRefGoogle Scholar
Garcia de Salamone, I.E.Döbereiner, J., Urquiaga, S. & Boddey, R.M. (1996) Biological nitrogen fixation in Azospirillum strain-maize genotype associations as evaluated by the 15N isotope dilution technique. Biology and Fertility of Soils 23, 249256.Google Scholar
Giller, K.E., Wani, S.P. & Day, J.M. (1986) Use of isotope dilution to measure nitrogen fixation associated with the roots of sorghum and millet genotypes. Plant and Soil 90, 255263.Google Scholar
Gu, X. & Wu, X. (1994) A study on associative nitrogen fixation of bamboo rhizosphere. Forest Research 7, 618623.Google Scholar
Hamilton, K.G.A. (1982) The spittlebugs of Canada. Publication 1740, Ottawa, Agriculture Canada.Google Scholar
Heckathorn, S.A., McNaughton, S.J. & Coleman, J.S. (1999) C4 plants and herbivory. pp. 285312in Sage, R.F. & Monson, R.K. (Eds) C4 plant biology. New York, Academic Press.Google Scholar
Holmann, F. & Peck, D.C. (2002) Economic damage caused by spittlebugs (Homoptera: Cercopidae) in Colombia: A first approximation of impact on animal production in Brachiaria decumbens pastures. Neotropical Entomology 31, 275284.Google Scholar
Itô, Y. & Nagamine, M. (1981) Why a cicada, Mogannia minuta Matsumura, became a pest of sugarcane: an hypothesis based on the theory of ‘escape’. Ecological Entomology 6, 273283.Google Scholar
Jackson, D., Mason, C.F. & Long, S.P. (1985) Macro-invertebrate populations and production on a salt-marsh in east England dominated by Spartina anglica. Oecologia 65, 406411.CrossRefGoogle ScholarPubMed
James, E.K. (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crops Research 65, 197209.CrossRefGoogle Scholar
Janes, M.J. (1971) Twolined spittlebug adults severely damage sweet corn seedlings. Journal of Economic Entomology 64, 976977.CrossRefGoogle Scholar
Jiang, Z., Hull, R.J. & Sullivan, W.M. (2002) Nitrate uptake and reduction in C3 and C4 grasses. Journal of Plant Nutrition 25, 13031314.CrossRefGoogle Scholar
Judd, B.I. (1979) Handbook of tropical forage grasses. New York, Garland STPM Press.Google Scholar
Kahn, M.L., Parra-Colmenares, A., Ford, C.L., Kaser, F.McCaskill, D. & Ketchum, R.E. (2002) A mass spectrometry method for measuring 15N incorporation into pheophytin. Analytical Biochemistry 307, 219225.Google Scholar
Keller-Grein, G., Maass, B.L. & Hanson, J. (1996) Natural variation in Brachiaria and existing germplasm collections. pp. 1635in Miles, J.W., Maass, B.L. & do Valle, C.B. (Eds) Brachiaria: biology, agronomy, and improvement. Cali, Colombia, CIAT.Google Scholar
Komatsu, T. (1997) A revision of the froghopper genus Aphrophora Germar (Homoptera, Cercopoidea, Aphrophoridae) from Japan, Part 1. Japanese Journal of Entomology 65, 8196.Google Scholar
Krotzky, A., Bergold, R. & Werner, D. (1988) Plant characteristics limiting associative N2 -fixation (C2H2-reduction) with two cultivars of Sorghum nutans. Soil Biology and Biochemistry 20, 163173.Google Scholar
Lapointe, S.L., Serrano, M.S., Arango, G.L., Sotelo, G. & Cordoba, F. (1992) Antibiosis to spittlebugs (Homoptera: Cercopidae) in accessions of Brachiaria spp. Journal of Economic Entomology 85, 14851490.CrossRefGoogle Scholar
Lepage, H.S. & Monte, O. (1942) As cigarrinhas do capim ‘kikuio’. O Biológico 8, 255259.Google Scholar
Lei, T.-S., Lu, J.-G., Zhou, D.-F., Liu, X.-C. (1992) Studies in the behavior of Callitettix versicolor (Fabr.) and its control. Entomological Knowledge (Kunchong Zhishi) 29 334336.Google Scholar
Li, J.-Q., Zhao, Z.-M., Wu, S.-Y., Ming, K., Hou, L.-N. (2001) Biology and ecology of rice spittle bug (Callitettix versicolor). Journal of Southwest Agricultural University 23, 154159.Google Scholar
Linares, F.B.A., Pérez, N.G., (1985) Gramíneas hospederas de Aeneolamia spp. (Homoptera: Cercopidae) en la región centro occidental de Venezuela. Caña de Azúcar 3, 3442.Google Scholar
Long, S.P. (1999) Environmental responses. pp. 215249in Sage, R.F. & Monson, R.K. (Eds) C4 plant biology. New York, Academic Press.Google Scholar
Lu, R. & Xu, T. (1992) Studies on the bionomics of Aphrophora horizontalis Kato and its control. Forest Research 5, 687692.Google Scholar
Maasdorp, B.V. (1987) Contribution of associative N2 -fixation (acetylene reduction) in some grassland ecosystems in Zimbabwe. Soil Biology and Biochemistry 19, 712.Google Scholar
Mann, C.C. (1999) Genetic engineers aim to soup up crop photosynthesis. Science 283, 314315.Google Scholar
Marin-Morales, M.A., Zefa, E., Bertagna, M., Mathias, M.I.C. & Arrigoni, E. (2002) Chromosome analysis of two species of sugarcane pests of the genus Mahanarva (Homoptera, Cercopidae). Caryologia 55, 357360.CrossRefGoogle Scholar
Martin, R.M., Cox, J.R., Alston, D.G. & Ibarra, F.F. (1995) Spittlebug (Homoptera: Cercopidae) life cycle on buffelgrass in Northwestern Mexico. Annals of the Entomological Society of America 88, 471478.CrossRefGoogle Scholar
Martinelli, L.A., Victoria, R.L., Trivelin, P.C.O., Devol, A.H. & Richey, J.E. (1992) 15N natural abundance in plants of the Amazon river floodplain and potential atmospheric N2 fixation. Oecologia 90, 591596.Google Scholar
Matsuoka, M., Furbank, R.T., Fukayama, H. & Miyao, M. (2001) Molecular engineering of C4 photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 52, 297314.CrossRefGoogle ScholarPubMed
Melo, L.A.S., Reis, P.R. & Botelho, W. (1984) Cigarinhas-das-pastagens (Homoptera-Cercopidae) e sua distribuição no estado de Minas Gerais. Anais da Sociedade Entomologica do Brasil 13, 249260.CrossRefGoogle Scholar
Miles, J.W., Lapointe, S.L.Escandón, M.L. & Sotelo, G. (1995) Inheritance of resistance to spittlebug (Homoptera: Cercopidae) in interspecific Brachiaria spp. hybrids. Journal of Economic Entomology 88, 14771481.Google Scholar
Miranda, C.H.B. & Boddey, R.M. (1987) Estimation of biological nitrogen fixation associated with 11 ecotypes of Panicum maximum grown in nitrogen-15-labeled soil. Agronomy Journal 79, 558563.Google Scholar
Mislevy, P. (2002) Forage alternatives for Florida cattle. pp. 7986 in Proceedings of the 51st Annual Beef Cattle Short CourseMay 1–3, 2002University of Florida (Gainesville), Department of Animal Sciences.Google Scholar
Miyao, M. (2003) Molecular evolution and genetic engineering of C4 photosynthetic enzymes. Journal of Experimental Botany 54, 179189.CrossRefGoogle ScholarPubMed
Morris, D.R., Zuberer, D.A. & Weaver, R.W. (1985) Nitrogen fixation by intact grass-soil cores using 15N2 and acetylene reduction. Soil Biology and Biochemistry 17, 8791.Google Scholar
Myers, J.G. (1935) The ecological distribution of some South American froghoppers of the genus Tomaspis (Hem., Cercopidae). Tropical Agriculture 12, 114118.Google Scholar
Ndikumana, J., de & Leeuw, P.N. (1996) Regional experience with Brachiaria: sub-Saharan Africa. pp. 247257in Miles, J.W., Maass, B.L. & do Valle, C.B. (Eds) Brachiaria: biology, agronomy, and improvement. Cali, Colombia, CIAT.Google Scholar
Nilakhe, S.S. (1985) Ecological observations on spittlebugs with emphasis on their occurrence in rice. Pesquisa Agropecuária Brasileira, Brasília 20, 407414.Google Scholar
Nilakhe, S.S., Paschoal, G.O. & Savidan, Y. (1985) Survival and fecundity of spittlebugs on different grasses. pp. 791793 in Proceedings of the 15th International Grassland Conference,Kyoto, Japan.Google Scholar
Novotny, V. & Wilson, M.R. (1997) Why are there no small species among xylem-sucking insects? Evolutionary Ecology 11, 419437.CrossRefGoogle Scholar
Oliveira, A.L.M., Urquiaga, S.Döbereiner, J. & Baldani, J.I. (2002) The effect of inoculating endophytic N2 -fixing bacteria on micropropagated sugarcane plants. Plant and Soil 242, 205215.CrossRefGoogle Scholar
Panzer, R., Stillwaugh, D., Gnaedinger, R. & Derkovitz, G. (1995) Prevalence of remnant dependence among the prairie and savanna-inhabiting insects of the Chicago region. Natural Areas Journal 15, 101116.Google Scholar
Parker, C. & Riches, C.R. (1993) Parasitic weEds of the world. Wallingford, Oxon, CAB International.Google Scholar
Parsons, J.J. (1970) The ‘Africanization’ of the New World tropical grasslands. Tübinger Geographische Studien 34, 141153.Google Scholar
Peck, D.C. (1999) Seasonal fluctuations and phenology of Prosapia spittlebugs (Homoptera: Cercopidae) in upland pastures of Costa Rica. Environmental Entomology 28, 372386.Google Scholar
Peck, D.C. (2001) Diversidad y distribución geográfica del salivazo (Homoptera: Cercopidae) asociado con gramíneas en Colombia y Ecuador. Revista Colombiana de Entomología 27, 129136.CrossRefGoogle Scholar
Pickles, A. (1931) Froghopper ecology. Notes on the ecology of Tomaspis saccharina Dist. (Homoptera, Cercopidae), in Trinidad. Tropical Agriculture 8, 127130.Google Scholar
Pickles, A. (1938) Entomological contributions to the study of the sugar-cane froghopper. III. Observations on the biology of certain neotropical species of Tomaspis (Homoptera, Cercopidae). Tropical Agriculture 15, 5665.Google Scholar
Piedade, M.T.F., Junk, W.J. & Long, S.P. (1997) Nutrient dynamics of the highly productive C4 macrophyte Echinochloa polystachya on the Amazon floodplain. Ecology 11, 6065.Google Scholar
Pires, C.S.S., Price, P.W. & De Oliveira, R.C. (2000a) Distribution of the spittlebug Deois flavopicta Stal (Homoptera: Cercopidae) on wild and cultivated host species. Anais da Sociedade Entomologica do Brasil 29, 401412.Google Scholar
Pires, C.S.S., Price, P.W. & Fontes, E.G. (2000b) Preference-performance linkage in the neotropical spittlebug Deois flavopicta, and its relation to the phylogenetic constraints hypothesis. Ecological Entomology 25, 7180.Google Scholar
Press, M.C. & Whittaker, J.B. (1993) Exploitation of the xylem stream by parasitic organisms. Philosophical Transactions of the Royal Society of London, Series B 341, 101111.Google Scholar
Rao, I.M., Kerridge, P.C. & Macedo, M.C.M. (1996) Nutritional requirements of Brachiaria and adaptation to acid soils. pp. 5371in Miles, J.W., Maass, B.L. & do Valle, C.B. (Eds) Brachiaria: biology, agronomy, and improvement. Cali, Colombia, CIAT.Google Scholar
Raven, J.A. (1983) Phytophages of xylem and phloem: a comparison of animal and plant sap-feeders. Advances in Ecological Research 13, 135234.Google Scholar
Reis, V.M., Baldani, J.I., Baldani, V.L.D.Döbereiner, J. (2000) Biological dinitrogen fixation in Gramineae and palm trees. Critical Reviews in Plant Science 19, 227247.CrossRefGoogle Scholar
Reis, V.M., dos Reis, F.B., Quesada, D.M., de Oliveira, O.C.A., Alves, B.J.R., Urquiaga, S. & Boddey, R.M. (2001) Biological nitrogen fixation associated with tropical pasture grasses. Australian Journal of Plant Physiology 28, 837–834.Google Scholar
Rengel, Z. (2002) Breeding for better symbiosis. Plant and Soil 245, 147–142.Google Scholar
Riggs, P.J., Chelius, M.K., Iniguez, A.L., Kaeppler, S.M. & Triplett, E.W. (2001) Enhanced maize productivity by innoculation with diazotrophic bacteria. Australian Journal of Plant Physiology 28, 829836.Google Scholar
Robertson, G.P. & Rosswall, T. (1986) Nitrogen in West Africa: the regional cycle. Ecological Monographs 56, 4372.Google Scholar
Sage, R.F. (1999) Why C4 photosynthesis? pp. 316in Sage, R.F. & Monson, R.K. (Eds) C4 plant biology. New York, Academic Press.Google Scholar
Salguero-Navas, V.E., Hidalgo, H.H. & Ortega, J. (2000) Economic injury level for adult froghoppers, Aeneolamia spp. (Hemiptera: Cercopidae), in sugarcane in Guatemala. pp. 9195in Allsopp, P.G. & Suasa-ard, W. (Eds) Proceedings of the IV ISSCT Sugarcane Entomology Workshop, Khon Kaen, Thailand, 7–10 February 2000. International Society of Sugarcane Technologists, Brisbane, Australia.Google Scholar
Scheirs, J., De Bruyn, L. & Verhagen, R. (2001) A test of the C3 –C4 hypothesis with two grass miners. Ecology 82, 410421.Google Scholar
Shortman, S.L., Braman, S.K., Duncan, R.R., Hanna, W.W. & Engelke, M.C. (2002) Evaluation of turfgrass species and cultivars for potential resistance to twolined spittlebug (Hemiptera: Cercopidae). Journal of Economic Entomology 95, 478486.Google Scholar
Smith, N.J.H.Serrão, E.A.S. Alvim, P.T. & Falesi, I.C. (1995) Amazonia–resiliency and dynamism of the land and its people. Tokyo, United Nations University Press.Google Scholar
Surridge, C. (2002) The rice squad. Nature 416, 576578.Google Scholar
Taliaferro, C.M., Byers, R.A. & Burton, G.W. (1967) Effects of spittlebug injury on root production and sod reserves of coastal bermudagrass. Agronomy Journal 59, 530532.Google Scholar
Teal, J.M., Valiela, I. & Berlo, D. (1979) Nitrogen fixation by rhizosphere and free-living bacteria in salt marsh sediments. Limnology and Oceanography 24, 126132.Google Scholar
Thompson, V. (1994) Spittlebug indicators of nitrogen-fixing plants. Ecological Entomology 19, 391398.CrossRefGoogle Scholar
Thompson, V. (1999) Spittlebugs associated with actinorhizal host plants. Canadian Journal of Botany 77, 13871390.Google Scholar
Tjepkema, J.D. & Burris, R.H. (1976) Nitrogenase activity associated with some Wisconsin prairie grasses. Plant and Soil 45, 8194.CrossRefGoogle Scholar
Triplett, E.W. (1996) Diazotrophic endophytes: progress and prospects for nitrogen fixation in monocots. Plant and Soil 186, 2938.CrossRefGoogle Scholar
Urquiaga, S., Cruz, K.H.S. & Boddey, R.M. (1992) Contribution of nitrogen fixation to sugar cane: nitrogen-15 and nitrogen-balance estimates. Soil Science Society of America Journal 56, 105114.Google Scholar
Valério, J.R., Lapointe, S.L., Kelemu, S., Fernandes, C.D. & Morales, F.J. (1996) Pests and diseases of Brachiaria species. pp. 87105in Miles, J.W., Maass, B.L. & do Valle, C.B. (Eds) Brachiaria: biology, agronomy, and improvement. Cali, Colombia, CIAT.Google Scholar
Valério, J.R., Cardona, C., Peck, D.C. & Sotelo, G. (2001) Spittlebugs: bioecology, host plant resistance and advances in IPM. pp. 217221in Gomide, J.A., Mattos, W.R.S. & da Silva, S.C. (Eds) Proceedings of the 19th International Grasslands Congress, São Pedro, SP, Brazil, 11–21 February 2001.Google Scholar
van Berkum, P. & Bohlool, B.B. (1980) Evaluation of nitrogen fixation by bacteria in association with roots of tropical grasses. Microbiological Reviews 44, 491517.Google Scholar
Venkataramana, S., Mohan, Naidu K. & Singh, S. (1987) Membrane thermostability and nitrate reductase activity in relation to water stress tolerance of young sugar-cane plants. New Phytologist 107, 355–340.CrossRefGoogle ScholarPubMed
Weier, K.L. (1980) Nitrogen fixation associated with grasses. Tropical Grasslands 14, 194201.Google Scholar
Wilson, M.R. (1987) A faunistic review of Auchenorrhyncha on sugarcane. pp. 485492 in Proceedings of the 6th Auchenorrhyncha Meeting,Turin, Italy,September 7–11.Google Scholar
Wolfenden, J. & Jones, K. (1987) Seasonal variation of in situ nitrogen fixation (C2H2 reduction) in an expanding marsh of Spartina anglica. Journal of Ecology 75, 10111021.Google Scholar
Yoneyama, T., Muraoka, T., Kim, T.H., Dacanay, E.V. & Nakanishi, Y. (1997) The natural 15N abundance of sugarcane and neighboring plants in Brazil, the Philippines and Miyako (Japan). Plant and Soil 189, 239244.CrossRefGoogle Scholar
Young, A.M. (1984) On the evolution of cicada X host tree associations in Central America. Acta Biotheoretica 33, 163198.Google Scholar