Hostname: page-component-599cfd5f84-9drbd Total loading time: 0 Render date: 2025-01-07T05:54:14.351Z Has data issue: false hasContentIssue false

Allozyme variation and an estimate of the inbreeding coefficient in the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae)

Published online by Cambridge University Press:  10 July 2009

Philippe Borsa*
Affiliation:
ORSTOM, Institut Francais de Recherche Scientifique pour le Développement en Coopération, Noumea, Nouvelle-Calédonie
D. Pierre Gingerich
Affiliation:
Department of Ecology and Systematics, Cornell University, Ithaca, New York, USA
*
P. Borsa, ORSTOM, BP A5, Noumea, New Caledonia.

Abstract

Seven presumed Mendelian enzyme loci (Est-2, Est-3, Gpi, Idh-l, Idh-2, Mdh-2 and Mpi) were characterized and tested for polymorphism in coffee berry borers, Hypothenemus hampei (Ferrari), sampled in Côte d′Ivoire, Mexico and New Caledonia. The average genetic diversity was H = 0.080. Two loci, Mdh-2 and Mpi were polymorphic, and thus usable as genetic markers. The population structure of H. hampei was analysed using Weir & Cockerham's estimators of Wright's F-statistics. A high degree of inbreeding (f = 0.298) characterized the elementary geographic sampling unit, the coffee field. The estimate of gene flow between fields within a country was Nm = 10.6 and that between countries was Nm = 2. The population genetic structure in H. hampei could be related to its known population biological features and history.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beaumont, A.R., Day, T.R., & Gäde, G. (1980) Genetic variation at octopine dehydrogenase locus in the adductor muscle of Cerastoderma edulae (L.) and six other bivalve species. Marine Biology Letters 1, 137148.Google Scholar
Bergamin, J. (1943) Contribuiçáo para o conhecimento da biologia da broca do café 'Hypothenemus hampei (Ferrari 1867)' (Col. Ipidae). Arquivas do Institute Biologico 14, 3172.Google Scholar
Brun, L.O., Marcillaud, C., Gaudichon, V. & Suckling, D.M. (1989) Endosulfan resistance in coffee berry borer Hypothenemus hampei (Coleoptera: Scolytidae) in New Caledonia. Journal of Economic Entomology 82, 13111316.CrossRefGoogle Scholar
Brun, L.O., Gaudichon, V. & Wigley, P.J. (1993) An artificial diet for continuous rearing of the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae). Insect Science and its Application 14, 585587.Google Scholar
Doebley, J., Morden, C.W. & Schertz, K.F. (1986) A gene modifying mitochondrial malate dehydrogenase isozymes in Sorghum (Graminaceae). Biochemical Genetics 24, 813820.CrossRefGoogle Scholar
ffrench-Constant, R.H., Steichen, J.C. & Brun, L.O. (1994) A molecular diagnostic for endosulfan insecticide resistance in the coffee berry borer, Hypothenemus hampei (Coleoptera, Scolytidae). Bulletin of Entomological Research 84, 1115.CrossRefGoogle Scholar
Giordanengo, P. (1992) Biologie, éco-éthologie et dynamique des populations du scolyte du grain de café, Hypothenemus hampei Ferr. (Coleoptera, Scolytidae) en Nouvelle-Calédonie. Thèse de doctorat, Université de Rennes.Google Scholar
Graur, D. (1985) Gene diversity in Hymenoptera. Evolution 39, 190199.CrossRefGoogle ScholarPubMed
Hamilton, W.D. (1967) Extraordinary sex ratios. Science 156, 477488.CrossRefGoogle ScholarPubMed
Harris, H. & Hopkinson, D.A. (1976) Handbook of enzyme electrophoresis in human genetics. Amsterdam, North Holland.Google Scholar
Harry, D.E. (1983) Identification of a locus modifying the electrophoretic mobility of malate dehydrogenase isoenzymes in incense-cedar (Calocedrus decurrens) and its implications for population studies. Biochemical Genetics 21, 417434.CrossRefGoogle ScholarPubMed
Krafsur, E.S., Obrycki, J.J. & Flanders, R.V. (1992) Gene flow in populations of the seven-spotted lady beetle, Coccinella septempunctata. Journal of Heredity 83, 440444.CrossRefGoogle Scholar
Le Pelley, R.H. (1968) Pests of coffee. London, Longmans.Google Scholar
Loukas, M., Krimbas, C.B., Mavragani-Tsipidou, P. & Kastritsis, C.D. (1979) Genetics of Drosophila pseudoobscura populations. VIII. Allozyme loci and their chromosome maps. Journal of Heredity 70, 1726.CrossRefGoogle ScholarPubMed
Nevo, E., Beiles, A. & Ben-Shlomo, R. (1984) The evolutionary significance of genetic diversity: ecological, demographic and life-history correlates. Lecture Notes in Biomathematics 53, 13213.CrossRefGoogle Scholar
Oxford, G.S. (1975) Food-induced esterase phenocopies in the snail Cepaea nemoralis. Heredity 35, 361370.CrossRefGoogle ScholarPubMed
Pasteur, N., Pasteur, G., Bonhomme, F., Catalan, J. & Britton-Davidian, J. (1987) Manuel technique de génétique par électrophorèse des protéines. Paris, Lavoisier.Google Scholar
Richardson, B.J., Baverstock, P.R. & Adams, N. (1986) Allozyme electrophoresis: a handbook for animal systematics and population studies. Sydney, Academic Press.Google Scholar
Sladden, G.E. (1934) Le Stephanoderes hampei Ferr. Bulletin Agricole du Congo Belge 25, 2677.Google Scholar
Slatkin, M. (1993) Isolation by distance in equilibrium and nonequilibrium populations. Evolution 47, 264279.CrossRefGoogle Scholar
Ticheler, J.H.G. (1961) Etude analytique de l'épidémiologie du scolyte des graines de café, Stephanoderes hampei Ferr. en Côte d′Ivoire. Mededelingen van de Landbouwhogeschool te Wageningen 61, 1149.Google Scholar
Weir, B.S. & Cockerham, C.C. (1984) Estimating F-statistics for the analysis of population structure. Evolution 38, 13581370.Google ScholarPubMed
Wright, S. (1969) Evolution and the genetics of populations, Vol. 2: the theory of gene frequencies. Chicago, University of Chicago Press.Google Scholar