Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-31T22:55:12.015Z Has data issue: false hasContentIssue false

Species composition, diversity, and the abundance of arthropods inhabiting burrows of the common hamster (Cricetus cricetus L.)

Published online by Cambridge University Press:  10 April 2019

P. Celebias
Affiliation:
Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Umultowska Str. 89, 61-614 Poznań, Poland
A. Melke
Affiliation:
Independent Researcher, Św. Staniaława Str. 11, 5, 62-800 Kalisz, Poland
D.J. Gwiazdowicz
Affiliation:
Department of Forest Pathology of Poznań University of Life Sciences, Wojska Polskiego 71 C, 60-625 Poznań, Poland
M. Przewoźny
Affiliation:
Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Umultowska Str. 89, 61-614 Poznań, Poland
K. Komosiński
Affiliation:
Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Michała Oczapowskiego Str. 1A, 10-719 Olsztyn, Poland
E. Baraniak
Affiliation:
Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Umultowska Str. 89, 61-614 Poznań, Poland
K. Winnicka
Affiliation:
Department of Genetics, Faculty of Biology, Adam Mickiewicz University, Umultowska Str. 89, 61-614 Poznań, Poland
I. Melosik*
Affiliation:
Department of Genetics, Faculty of Biology, Adam Mickiewicz University, Umultowska Str. 89, 61-614 Poznań, Poland
J. Ziomek
Affiliation:
Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Umultowska Str. 89, 61-614 Poznań, Poland
*
*Author for correspondence Phone: (+48) 61 829 58 60 E-mail: [email protected]

Abstract

The is insufficient knowledge of arthropod communities occurring in specific microhabitats. In this study, we characterize the arthropod assemblages inhabiting burrows of the common hamster (Cricetus cricetus L.) and factors that determine their diversity and abundance. We tested the following hypotheses: (1) arthropod assemblages are associated with a particular dominant vegetation occurring in the vicinity of burrows; (2) a correlation exists between fine-scale geographic distances among burrows and assemblage dissimilarity; and (3) the type of trap influences the sampling success of captured arthropods. We found 73 morphospecies belonging to 16 families in 109 burrows, most of which were in the families Staphylinidae (Coleoptera) and Parasitidae (Arachnida: Acari: Mesostigmata). The most abundant families were Staphylinidae, Cryptophagidae (Coleoptera), Parasitidae, and Macrochelidae (Mesostigmata) (78.89%). Among the identified species, we found Aleochara irmgardis (Staphylinidae) and Poecilochirus sexclavatus (Parasitidae) which had not yet been reported in Poland, and several other rare species. Meat-baited traps captured 64.34% more individuals, which were more diverse and species-rich than the non-baited control traps, but the former was more selective for saprophages, necrophages, and coprophages. The burrows located in areas overgrown by triticale (a hybrid of wheat and rye) were inhabited by 69.86% of the identified arthropod species, and these also had the highest abundance (64.07%) in comparison with other habitats. However, differences in sample size biased our results toward and overestimate arthropods associated with this vegetation. This study underlines that the species composition detected in burrows was affected by the methods used and hamster preferences for a specific habitat rather than the geographic proximity of the burrows. More extensive sampling across multiple habitats will be necessary to confirm our findings.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Athias-Binche, F. (1979) Effects of some soil features on a Uropodine mite community in the Massane forest (Parenees-Orientales, France). pp. 567573 in Rodriguez, J.G. (Ed.) Recent Advances in Acarology. London, Academic Press.Google Scholar
Banaszek, A. & Ziomek, J. (2010) The common hamster (Cricetus cricetus L.) population in the city of Lublin. Annales Universitatis Mariae Curie-Skłodowska. Sectio C: Biologia 65, 5966.Google Scholar
Behan-Pelletier, V. & Newton, G. (1999) Computers in biology: linking soil biodiversity and ecosystem function – the taxonomic dilemma. BioScience 49, 149153.Google Scholar
Bright, P.W. & Morris, P.A. (1996) Why are dormice rare? A case study in conservation biology. Mammal Review 26, 157187.Google Scholar
Büchner, S., Stubbe, M. & Striese, D. (2003) Breeding and biological data for the common dormouse (Muscardinus avellanarius) in Eastern Saxony (Germany). Acta Zoologica Academiae Scientiarum Hungaricae 49, 1926.Google Scholar
Burakowski, B., Mroczkowski, M. & Stefańska, J. (1981) Chrząszcze – Coleoptera. Kusakowate – Staphylinidae. Katalog Fauny Polski, Warsaw, Fundacja Natura Optima Dux.Google Scholar
Celebias, P. (2017) The beetles (Coleoptera) inhabiting the common hamster's burrows (Cricetus cricetus) in the locality of Przybyszów. MSc Dissertation, Adam Mickiewicz University in Poznan, Poland. Accessed online at https://apd.amu.edu.pl/diplomas/116559.Google Scholar
Celebias, P., Przewoźny, M., Gwiazdowicz, D. & Ziomek, J. (2017) The invertebrates inhabiting the common hamster's burrows (Cricetus cricetus). in Conference Proceedings of 24th Annual Meeting of the International Hamster Workgroup, Uglich 1–5 October 2017, KMK Scientific Press.Google Scholar
Cleary, D.F.R. & Genner, M.J. (2006) Diversity patterns of Bornean butterfly assemblages. pp. 503524 in Hawksworth, D.L. & Bull, A.T. (Eds) Arthropod Diversity and Conservation. Topics in Biodiversity and Conservation, Volume 1. Dordrecht, Springer.Google Scholar
Chao, A. (1984) Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics 11, 265270.Google Scholar
Chao, A. & Chiu, C.-H. (2016) Species richness: estimation and comparison. pp. 126 in Balakrishnan, N., Colton, T., Everitt, B., Piegorsch, W., Ruggeri, F. & Teugels, J.L. (Eds) Wiley StatsRef: Statistics Reference Online. Hoboken, NJ, John Wiley & Sons, Ltd. doi: 10.1002/9781118445112.stat03432.pub2.Google Scholar
Chao, A., Hwang, W.-H., Chen, Y.C. & Kuo, C.Y. (2000) Estimating the number of shared species in two communities. Statistica Sinica 10, 227246.Google Scholar
Clavel, J., Julliard, R. & Devictor, V. (2011) Worldwide decline of specialist species: toward a global functional homogenization? Frontiers in Ecology and the Environment 9, 222228.Google Scholar
Colles, A., Liow, L.H. & Prinzing, A. (2009) Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecology Letters 12, 849863.Google Scholar
Colwell, R.K. & Coddington, J.A. (1994) Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society B: Biological Sciences 345, 101118.Google Scholar
Colwell, R.K., Chao, A., Gotelli, N.J., Lin, S.-Y., Mao, C.X., Chazdon, R.L. & Longino, J.T. (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology 5, 321.Google Scholar
Doblas-Miranda, E., Sánchez-Piñero, F. & González-Megías, A. (2007) Soil macroinvertebrate fauna of a Mediterranean arid system: composition and temporal changes in the assemblage. Soil Biology and Biochemistry 39, 19161925.Google Scholar
Dominik, Ch., Seppelt, R., Horgan, F.G., Marquez, R., Settele, J. & Václavik, T. (2017) Regional-scale effects override the influence of fine-scale landscape heterogeneity on rice arthropod communities. Agriculture, Ecosystems and Environment 246, 269278.Google Scholar
Evers, A. (1940) Onderzoekingen naar Criceticole Coleoptera tevens Mededeelingen over den hamster en diens woning. Natuurhistorish Maandblad 29, 124127.Google Scholar
Fend'a, P. (2010) Mites (Mesostigmata) inhabiting bird nests in Slovakia (Western Carpathians). pp. 199205 in Sabelis, M. & Bruin, J. (Eds) Trends in Acarology. Dordrecht, Springer.Google Scholar
Feoktistova, N., Meschersky, I.G., Bogomolov, P.L., Sayan, A.S., Poplavskaya, N.S. & Surov, A.V. (2017) Phylogeographic structure of the common hamster (Cricetus cricetus L.): late Pleistocene connections between Caucasus and Western European populations. PLoS ONE 12, e0187527.Google Scholar
Gardner, T.A., Barlow, J., Araujo, I.S., Ávila-Pires, T.C., Bonaldo, A.B., Costa, J.E., Esposito, M.C., Ferreira, L.V., Hawes, J., Hernandez, M.I.M., Hoogmoed, M.S., Leite, R.N., Lo-Man-Hung, N.F., Malcolm, J.R., Martins, M.B., Mestre, L.A.M., Miranda-Santos, R., Overal, W.L., Parry, L., Peters, S.L., Ribeiro-Junior, M.A., Da Silva, M.N.F., Motta, C. & Peres, C.A. (2008) The cost-effectiveness of biodiversity surveys in tropical forests. Ecology Letters 11, 139150.Google Scholar
Gathmann, F.O., Manne, L.L. & Williams, D.D. (2009) Spatial patterns in insect community composition in coldwater springs. Aquatic Ecology 43, 501. https://doi.org/10.1007/s10452-008-9166-y.Google Scholar
Gotelli, N.J. & Colwell, R.K. (2011) Estimating species richness. Biological Diversity: Frontiers in Measurement and Assessment 12, 3954.Google Scholar
Gwiazdowicz, D. (2007) Ascid Mites (Acari, Mesostigmata) From Selected Forest Ecosystems and Microhabitats in Poland. Poznań, Wydawnictwo Akademii Rolniczej.Google Scholar
Hegyeli, Z., Kecskés, A., Korbut, Z. & Banaszek, A. (2015) The distribution and genetic diversity of the common hamster Cricetus cricetus in Central and Western Romania. Folia Zoologica 64, 173182.Google Scholar
Hill, M.O. (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427432.Google Scholar
Hyatt, K. (1980) Mites of the subfamily Parasitinae (Mesostigmata: Parasitidae) in the British Isles. Bulletin of the British Museum (Natural History) 38, 237378.Google Scholar
Jaccard, P. (1912) The distribution of the flora in the alpine zone. New Phytologist 11, 3750.Google Scholar
Kaminskienė, E., Radzijevskaja, J., Balčiauskas, L., Gedminas, V. & Paulauskas, A. (2017) Laelapidae mites (Acari: Mesostigmata) infesting small rodents in the Curonian Spit, Lithuania. Biologija 63, 169176.Google Scholar
Korbut, Z., Rusin, M. Y. & Banaszek, A. (2013) The distribution of the common hamster (Cricetus cricetus) in western Ukraine. Zoologica Poloniae 58, 99112.Google Scholar
Kovarik, P.W., Chordas, S.W. III, Robison, H., Skelley, P., Connior, M., Fiene, J. & Heidt, G. (2008) Insects inhabiting the burrows of the Ozark pocket gopher in Arkansas. Journal of the Arkansas Academy of Science 62, 7578.Google Scholar
Krasnov, B.R., Shenbrot, G.I., Mouillot, D., Khokhlova, I.S. & Poulin, R. (2005) Spatial variation in species diversity and composition of flea assemblages in small mammalian hosts: geographic distance or faunal similarity? Journal of Biogeography 32, 633644.Google Scholar
Krasnov, B.R., Mouillot, D., Shenbrot, G.I., Khokhlova, I.S., Vinarski, M.V., Korallo-Vinarskaya, N.P. & Poulin, R. (2010) Similarity in ectoparasite faunas of Palaearctic rodents as a function of host phylogenetic, geographic or environmental distances: which matters the most? International Journal for Parasitology 40(7), 807817.Google Scholar
Krawczyk, A., Augustiniĉová, G., Gwiazdowicz, D.J., Konwerski, S., Kucharczyk, H., Olejniczak, I., Rutkowski, T., Skubała, P., Solarz, K., Zdrojewska, Z. & Tryjanowski, P. (2015) Nests of the harvest mouse (Micromys minutus) as habitat for invertebrates. Biologia 70, 16371647.Google Scholar
Krištofìk, J., Masan, P., Sustek, Z. & Gajdos, P. (1993) Arthropods in the nests of penduline tit (Remiz pendulinus). Biologia, Bratislava 48, 493493.Google Scholar
Lamarre, G.P., Herault, B., Fine, P.V.A., Vede, V., Lupoli, R., Mesones, I. & Baraloto, CH. (2016) Taxonomic and functional composition of arthropod assemblages across contrasting Amazonian forests. Journal of Animal Ecology 85, 227239.Google Scholar
Liu, J.L., Li, F.R., Liu, C., Liu, Q.J. & Niu, R.X. (2012) Influences of shrub vegetation on distribution and diversity of a ground beetle community in a Gobi desert ecosystem. Biodiversity and Conservation 21, 26012619.Google Scholar
Liu, R., Zhu, F., Song, N., Yang, X. & Chai, Y. (2013) Seasonal distribution and diversity of ground arthropods in microhabitats following a shrub plantation age sequence in desertified steppe. PLoS ONE 8(10), e77962.Google Scholar
Löbl, I. & Löbl, D. (2015) Catalogue of Palaearctic Coleoptera. Hydrophiloidea-Staphylinoidea Revised and Updated Edition. Leiden, Boston, Brill.Google Scholar
Löbl, I. & Smetana, A. (2003) Catalogue of Palaearctic Coleoptera 1: Archeostemata – Myxophaga – Adephaga. Stenstrup, Apollo Books.Google Scholar
Löbl, I. & Smetana, A. (2007) Catalogue of Palaearctic Coleoptera 4: Elateroidea, Derodontoidea, Bostrichoidea, Lymexyloidea, Cleroidea and Cucujoidea. Stenstrup, Apollo Books.Google Scholar
Mašán, P. (2003) Macrochelid Mites of Slovakia (Acari, Mesostigmata, Macrochelidae). Bratislava, Slovak Academy of Sciences.Google Scholar
Mašán, P. & Stanko, M. (2005) Mesostigmatic mites (Acari) and fleas (Siphonaptera) associated with nests of the mound-building mouse, Mus spicilegus Petényi, 1882 (Mammalia, Rodentia). Acta Parasitologica 50, 228234.Google Scholar
Matthews, T.J. & Whittaker, R.J. (2014) Fitting and comparing competing models of the species abundance distribution: assessment and prospect. Frontiers of Biogeography 6, 6782.Google Scholar
McGill, B.J. (2003) A test of the unified neutral theory of biodiversity. Nature 422, 881885.Google Scholar
McGill, B.J., Etienne, R.S., Gray, J.S., Alonso, D., Anderson, M.J., Benecha, H.K., Dornelas, M., Enquist, B.J., Green, J.L., He, F., Hurlbert, A.H., Magurran, A.E., Marquet, P.A., Maurer, B.A., Ostling, A., Soykan, C.U., Ugland, K.I. & White, E.P. (2007) Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecology Letters 10, 9951015.Google Scholar
Melke, A. & Staniec, B. (1999) Materiały do poznania Aleocharinae (Coleoptera: Staphylinidae) wschodniej Polski. Contribution to the knowledge of Aleocharinae (Coleoptera: Staphylinidae) of eastern Poland. Wiadomości Entomologiczne 18, 199206.Google Scholar
Melosik, I., Ziomek, J., Winnicka, K., Reiners, T.E., Banaszek, A., Mammen, K., Mammen, U. & Marciszak, A. (2017) The genetic characterization of an isolated remnant population of an endangered rodent (Cricetus cricetus L.) using comparative data: implications for conservation. Conservation Genetics 18, 759775.Google Scholar
Moreno, C.E. & Halffter, G. (2001) On the measure of sampling effort used in species accumulation curves. Journal of Applied Ecology 38, 487490.Google Scholar
Napierała, A. & Błoszyk, J. (2013) Unstable microhabitats (merocenoses) as specific habitats of Uropodina mites (Acari: Mesostigmata). Experimental and Applied Acarology 60, 163180.Google Scholar
Napierała, A., Mądra, A., Leszczyńska-Deja, K., Gwiazdowicz, D.J., Gołdyn, B. & Błoszyk, J. (2016) Community structure variability of Uropodina mites (Acari: Mesostigmata) in nests of the common mole, Talpa europaea, in Central Europe. Experimental and Applied Acarology 68, 429440.Google Scholar
Nechay, G. (2000) Status of Hamsters Cricetus Cricetus, Cricetus Migratorius, Mesocricetus newtoni, and Other Hamster species in Europe. Strasbourg, Council of Europe.Google Scholar
Nentwig, W. (1989) Seasonal and taxonomic aspects of the size of arthropods in the tropics and its possible influence on size-selectivity in the prey of a tropical spider community. Oecologia 78, 3540.Google Scholar
Neumann, K., Jansman, H., Kayser, A., Maak, S. & Gattermann, R. (2004) Multiple bottlenecks in threatened Western European populations of the common hamster Cricetus cricetus (L.). Conservation Genetics 5, 181193.Google Scholar
Nowosad, A. (1990) Staphylinidae (Coleoptera) gniazd kreta – Talpa europaea L. w Polsce. Seria Zoologiczna. Uniwersytet im. Adama Mickiewicza w Poznaniu 15, 1254.Google Scholar
Oksanen, J., Kindt, R., Legendre, P., O'Hara, B., Stevens, M.H.H., Oksanen, M.J. & Suggests, M. (2007) The vegan package. Community Ecology Package 10, 631637.Google Scholar
Peakall, R.O.D. & Smouse, P.E. (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Molecular Ecology Resources 6, 288295.Google Scholar
Peterson, A.C., Hendrix, P.F., Haydu, C., Graham, R.C. & Quideau, S.A. (2001) Single-shrub influence on earthworms and soil macroarthropods in the southern California chaparral. Pedobiologia 45, 509522.Google Scholar
Penny, N.D. & Arias, J.R. (1982) Insects of an Amazon Forest. New York, Columbia University Press.Google Scholar
Poisot, T., Lepennetier, G., Martinez, E., Ramsayer, J. & Hochberg, M.E. (2010) Resource availability affects the structure of a natural bacteria–bacteriophage community. Biology Letters 7(2), 201204. doi: 10.1098/rsbl.2010.0774.Google Scholar
Poisot, T., Bever, J.D., Nemri, A., Thrall, P.H. & Hochberg, M.E. (2011) A conceptual framework for the evolution of ecological specialisation. Ecology Letters 14, 841851.Google Scholar
Poisot, T., Canard, E., Mouquet, N. & Hochberg, M.E. (2012) A comparative study of ecological specialization estimators. Methods in Ecology and Evolution 3, 537544.Google Scholar
Prado, P.I., Miranda, M.D. & Chalom, A. (2016) Fitting species abundance models with maximum likelihood. Quick reference for sads package. Accessed online at https://cran.r-project.org/web/packages/sads/vignettes/sads_intro.pdf.Google Scholar
Schatz, I. (2009) Aleochara irmgardis Vogt, 1954 (Coleoptera: Staphylinidae) in der Ahrauen bei Bruneck-Neumeldung für Südtirol und Italien vom Tag der Artenvielfalt 2009. Gredleriana 9, 281282.Google Scholar
Skelley, P.E. & Kovarik, P.W. (2001) Insect surveys in the southeast: investigating a relictual entomofauna. Florida Entomologist 84, 552555.Google Scholar
Skljar, V. (2002) A new species of mite Poecilochirus (gamasina, Parasitidae) from Ukraine. Vestnik Zoologii 36, 7779.Google Scholar
Skvarla, M. J. & Dowling, A. P. (2017) A comparison of trapping techniques (Coleoptera: Carabidae, Buprestidae, Cerambycidae, and Curculionoidea excluding Scolytinae). Journal of Insect Science (Online) 17(1), 7.Google Scholar
Soliman, Z.R., Zaher, M.A. & Mohamed, M.I. (1978) Biology and predaceous efficiency of Macrocheles matrius (Hull) (Acari, Mesostigmata). Zeitschrift für Angewandte Entomologie 85, 225230.Google Scholar
Stanko, M., Krasnov, B.R. & Morand, S. (2006) Relationship between host abundance and parasite distribution: inferring regulating mechanisms from census data. Journal of Animal Ecology 75, 575583.Google Scholar
Stanko, M., Čanády, A., Fričová, J., Mošanskỳ, L., Čisláková, L. & Karbowiak, G. (2007) Ecology and epidemiological importance of the marginal population of Mus spicilegus (Rodentia). p. 170 in Prigioni, C. & Sforzi, A. (Eds) Abstracts V European Congress of Mammalogy, Hystrix the Italian Journal of Mammalogy. Siena, Associazione Teriologica Italiana.Google Scholar
Stork, N.E. (2017) How many species of insects and other terrestrial arthropods are there on earth? Annual Review of Entomology 63, 3145. doi: 10.1146/annurev-ento-020117-043348.Google Scholar
Surov, A.V., Banaszek, A., Bogomolov, P., Feoktistova, N. & Monecke, S. (2016 a) Dramatic global decrease in the range and reproduction rate of the European hamster Cricetus cricetus. Endangered Species Research 31, 119145.Google Scholar
Surov, A.V., Poplavskaya, N.S., Bogomolov, P.L., Kropotkina, M.V., Tovpinetz, N.N., Katzman, E.A. & Feoktistova, N.Y. (2016 b) Synurbization of the common hamster (Cricetus cricetus L., 1758). Russian Journal of Biological Invasions 7, 6976.Google Scholar
Šustek, Z. & Krištofík, J. (2009) Beetles (Insecta: Coleoptera) in nests of five species of Passeriform birds (Carduelis chloris, Troglodytes troglodytes, Turdus merula, Turdus philomelos, Turdus pilas) in Central Europe. Muzeul Olteniei Craiova, Oltenia, Studiişi comunicări, Ştiinţele Naturii 25, 97104.Google Scholar
Šustek, Z. & Stanko, M. (2012) Beetles (Insecta Coleoptera) in the nests of Mound-building mouse Mus spicilegus in four orographic units in Slovakia. Muzeul Olteniei Craiova. Oltenia. Studii şi comunicări. Ştiinţele Naturii 28, 6678.Google Scholar
Szujecki, A. (1980) Chrząszcze, Coleoptera, Kusakowate-Staphylinidae, kusaki Staphylininae. Klucze do oznaczania owadów Polski 19, 1164.Google Scholar
Thomas, J.A., Telfer, M.G., Roy, D.B., Preston, C.D., Greenwood, J.J.D., Asher, J., Fox, R., Clarke, R.T. & Lawton, J.H. (2004) Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303, 18791881.Google Scholar
Volkov, I., Banavar, J.R., Hubbell, S.P. & Maritan, A. (2007) Patterns of relative species abundance in rainforests and coral reefs. Nature 450, 4549.Google Scholar
Weinhold, U. (2008) Draft European action plan for the conservation of the common hamster (Cricetus cricetus L., 1758) pp. 1–36 in Convention on the conservation of European wildlife and natural habitats, Standing Commitee. Strasbourg, 15 September 2008, Council of Europe.Google Scholar
Willott, S.J. (2001) Species accumulation curves and the measure of sampling effort. Journal of Applied Ecology 38, 484486.Google Scholar
Woolhouse, M.E. & Gowtage-Sequeria, S. (2005) Host range and emerging and reemerging pathogens. Emerging Infectious Diseases 11, 18421847.Google Scholar
You, M., Hou, Y., Liu, Y., Yang, G., Li, Z. & Cai, H. (2004) Non–crop habitat manipulation and integrated pest management in agroecosystems. Acta Entomologica Sinica 47, 260268.Google Scholar
Ziomek, J. & Banaszek, A. (2007) The common hamster, Cricetus cricetus in Poland: status and current range. Folia Zoologica 56, 235242.Google Scholar
Supplementary material: PDF

Celebias et al. supplementary material

Figures S1-S2

Download Celebias et al. supplementary material(PDF)
PDF 371.1 KB