Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T14:02:50.422Z Has data issue: false hasContentIssue false

The spatial genetic differentiation of the legume pod borer, Maruca vitrata F. (Lepidoptera: Crambidae) populations in West Africa

Published online by Cambridge University Press:  17 April 2012

T.A. Agunbiade*
Affiliation:
Department of Entomology, University of Illinois at Urbana-Champaign, Illinois, USA
B.S. Coates
Affiliation:
USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, Iowa, USA
K.S. Kim
Affiliation:
College of Veterinary Medicine, Seoul National University, Seoul, South Korea and USDA–ARS, Corn Insects and Crop Genetics Research Unit, Ames, Iowa, USA
D. Forgacs
Affiliation:
School of Integrative Biology, University of Illinois at Urbana-Champaign, Illinois, USA
V.M. Margam
Affiliation:
King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
L.L. Murdock
Affiliation:
Department of Entomology, Purdue University, West Lafayette, Indiana, USA
M.N. Ba
Affiliation:
Institut de L'Environnement et de Recherches Agricole Station de Kamboinse, Ouagadougou, Burkina Faso, France
C.L. Binso-Dabire
Affiliation:
Institut de L'Environnement et de Recherches Agricole Station de Kamboinse, Ouagadougou, Burkina Faso, France
I. Baoua
Affiliation:
Institut National de la Recherche Agronomique du Niger, Maradi, Niger
M.F. Ishiyaku
Affiliation:
Department of Plant Science, Institute for Agricultural Research, Ahmadu Bello University, Zaria, Nigeria
M. Tamò
Affiliation:
International Institute of Tropical Agriculture, Cotonou, Benin
B.R. Pittendrigh
Affiliation:
Department of Entomology, University of Illinois at Urbana-Champaign, Illinois, USA
*
*Author for correspondence Fax: (217) 244–3499 E-mail: [email protected]

Abstract

The legume pod borer, Maruca vitrata, is an endemic insect pest that causes significant yield loss to the cowpea crop in West Africa. The application of population genetic tools is important in the management of insect pests but such data on M. vitrata is lacking. We applied a set of six microsatellite markers to assess the population structure of M. vitrata collected at five sites from Burkina Faso, Niger and Nigeria. Observed polymorphisms ranged from one (marker 3393) to eight (marker 32008) alleles per locus. Observed and expected heterozygosities ranged from 0.0 to 0.8 and 0.0 to 0.6, respectively. Three of the loci in samples from Nigeria and Burkina Faso deviated significantly from Hardy-Weinberg Equilibrium (HWE), whereas no loci deviated significantly in samples from Niger. Analysis of molecular variance (AMOVA) indicated that 67.3% level of the genetic variation was within individuals compared to 17.3% among populations. A global estimate of FST=0.1 (ENA corrected FST=0.1) was significant (P⩽0.05) and corroborated by pairwise FST values that were significant among all possible comparisons. A significant correlation was predicted between genetic divergence and geographic distance between subpopulations (R2=0.6, P=0.04), and cluster analysis by the program STRUCTURE predicted that co-ancestry of genotypes were indicative of three distinct populations. The spatial genetic variance among M. vitrata in West Africa may be due to limited gene flow, south-north seasonal movement pattern or other reproductive barriers. This information is important for the cultural, chemical and biological control strategies for managing M. vitrata.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arguedas, N. & Parker, P.G. (2000) Seasonal migration and genetic population structure in house wrens. Condor 102, 517528.Google Scholar
Arodokoun, D.Y., Tamo, M., Cloutier, C. & Brodeur, J. (2006) Larval parasitoids occurring on Maruca vitrata Fabricius (Lepidoptera: Pyralidae) in Benin, West Africa. Agriculture, Ecosystems and Environment 113, 320325.CrossRefGoogle Scholar
Ba, N.M., Margam, V.M., Dabire-Binso, C.L., Sanon, A., McNeil, J., Murdock, L.L. & Pittendrigh, B.R. (2009) Seasonal and regional distribution of the cowpea pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae), in Burkina Faso. International Journal of Tropical Insect Science 29(3), 109113.Google Scholar
Baoua, I., Ba, N.M., Agunbiade, T.A., Margam, V., Binso-Dabire, C.L., Sanon, A. & Pittendrigh, B.R. (2011) Potential use of Sesbania pachycarpa DC (Fabaceae: Papilionoideae) as a refugia for the legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae). International Journal of Tropical Insect Science 31, 212218.CrossRefGoogle Scholar
Benjamini, Y. & Yekutieli, D. (2001) The control of false discovery rate under dependency. Annals of Statistics 29, 11651188.Google Scholar
Blouin, M.S., Parsons, M., Lacaille, V. & Lotz, S. (1996) Use of microsatellite loci to classify individuals by relatedness. Molecular Ecology 5(3), 393401.CrossRefGoogle ScholarPubMed
Bohonak, A.J. (2002) IBD (Isolation By Distance): a program for analyses of isolation by distance. Journal of Heredity 93, 153154.Google Scholar
Bottenberg, H., Tamò, M., Arodokoun, D., Jackai, L.E.N., Singh, B.B. & Youm, O. (1997) Population dynamics and migration of cowpea pests in northern Nigeria: implications for integrated pest management. pp. 271284in Singh, B.B., Mohan Raj, D.R., Dashiell, K.E. & Jackai, L.E.N. (Eds) Advances in Cowpea Research. Ibadan, Nigeria, International Institute of Tropical Agriculture (IITA) and Japan International Center for Agricultural Sciences (JIRCAS), IITA.Google Scholar
Britten, H.B. & Glasford, J.W. (2002) Genetic population structure of the Dakota skipper (Lepidoptera: Hesperia dacotae): a North American native prairie obligate. Conservation Genetics 3, 363374.CrossRefGoogle Scholar
Brumfield, R.T., Beerli, P., Nickerson, D.A. & Edwards, S.V. (2003) The utility of single nucleotide polymorphisms in inferences of population history. Trends in Ecology and Evolution 18(5), 249256.Google Scholar
Chapuis, M.P. & Estoup, A. (2007) Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution 24(3), 621631.Google Scholar
Coates, B.S. & Hellmich, R.L. (2003) Two sex-chromosome-linked microsatellite loci show geographic variance among North American Ostrinia nubilalis. Journal of Insect Science 3, 29.CrossRefGoogle ScholarPubMed
Chapuis, M.P., Loiseau, A., Michalakis, Y., Lecoq, A. & Estoup, A. (2005) Characterization and PCR multiplexing of polymorphic microsatellite loci for the locust Locusta migratoria. Molecular Ecology Notes 5, 554557.CrossRefGoogle Scholar
Chapuis, M.P., Lecoq, M., Michalakis, Y., Loiseau, A., Sword, G.A., Piry, S. & Estoup, A. (2008) Do outbreaks affect genetic population structure? A worldwide survey in Locusta migratoria, a pest plagued by microsatellite null alleles. Molecular Ecology 17(16), 36403653.Google Scholar
Coates, B.S., Sumerford, D.V., Miller, N.J., Kim, K.S., Sappington, T.W., Siegfried, B.D. & Lewis, L.C. (2009) Comparative performance of single nucleotide polymorphism (SNP) and microsatellite markers for population genetic analysis. Journal of Heredity 100, 556564.Google Scholar
Coates, B.S., Sumerford, D.V., Hellmich, R.L. & Lewis, L.C. (2010) A Helitron-like transposon super- family from Lepidoptera disrupts (GAAA)n microsatellites and is responsible for flanking sequence similarity within a microsatellite family. Journal of Molecular Evolution 70, 278288.CrossRefGoogle Scholar
Coates, B.S., Kroemer, J.A., Sumerford, D.V. & Hellmich, R.L. (2011) A novel class of miniature inverted repeat transposable elements (MITEs) that contain hitchhiking (GTCY)n microsatellites. Insect Molecular Biology 20, 1527.CrossRefGoogle ScholarPubMed
Coates, B.S., Hellmich, R.L., Grant, D.M. & Abel, C.A. (2012) Mobilizing the genome of Lepidoptera through novel sequence gains and end creation by non-autonomous Lep1 Helitrons. DNA Research 19, 1121.CrossRefGoogle ScholarPubMed
Dannon, E.A., Tamò, M., Van Huis, A. & Dicke, M. (2010) Effects of Volatiles from Maruca vitrata Larvae and Caterpillar-Infested Flowers of Their Host Plant Vigna unguiculata on the Foraging Behavior of the Parasitoid Apanteles taragamae. Journal of Chemical Ecology 36, 10831091.CrossRefGoogle ScholarPubMed
Dempster, A.P., Laird, N.M. & Rubin, D.B. (1977) Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological) 39(1), 138.Google Scholar
Dingle, H. (1996) Migration: The Biology of Life on the Move. New York, USA, Oxford University Press.Google Scholar
Evanno, G., Regnaut, S. & Goudet, J. (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology 14, 26112620.Google Scholar
Excoffier, L. & Lischer, H.E.L. (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564567.CrossRefGoogle ScholarPubMed
FAOSTAT (2000) FAO (Food and Agriculture Organization of the United Nations), Statistics. Available online at http://www.fao.org/corp/statistics/en/ (accessed 5 March 2012).Google Scholar
Feder, J.L. & Forbes, A.A. (2010) Sequential speciation and the diversity of parasitic insects. Ecological Entomology 35, 6776.Google Scholar
Glaubitz, J.C., Rhodes, O.E. & Dewoody, J.A. (2003) Prospects for inferring pairwise relationships with single nucleotide polymorphisms. Molecular Ecology 12(4), 10391047.Google Scholar
Guo, S. & Thompson, E.A. (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48, 361372.Google Scholar
Hancock, J.M. (1999) Microsatellites and other simple sequences: genomic context and mutational mechanisms. pp. 19in Goldstein, D.B. & Schlötterer, C. (Eds) Microsatellites: Evolution and Applications. Oxford, UK, Oxford University Press.Google Scholar
Huang, X. & Madan, A. (1999) CAP3: A DNA sequence assembly program. Genome Research 9, 868877.CrossRefGoogle ScholarPubMed
Hubisz, M., Falush, D., Stephens, M. & Pritchard, J. (2009) Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources 9, 13221332.CrossRefGoogle ScholarPubMed
Ji, Y.J. & Zhang, D.X. (2004) Characteristics of microsatellite DNA in lepidopteran genomes and implications for their isolation. Acta Zoologica Sinica 50, 608614.Google Scholar
Ji, Y.J., Zhang, D.X., Hewitt, G.M., Kang, L. & Li, D.M. (2003) Polymorphic microsatellite loci for the cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) and some remarks on their isolation. Molecular Ecology Notes 3, 102104.CrossRefGoogle Scholar
Ji, Y.J., Smith, H., Zhang, D.X. & Hewitt, G.M. (2004) Ten polymorphic microsatellite DNA loci for paternity and population genetics analysis in the fen raft spider (Dolomedes: Plantarius). Molecular Ecology Notes 4, 274276.CrossRefGoogle Scholar
Johannesen, J., Schwing, U., Seufert, W., Seitz, A. & Veith, M. (1997) Analysis of gene-flow and habitat patch network for Chazara briseis (Lepidoptera: Satyridae) in an agricultural landscape. Biochemical Systematics and Ecology 25, 419427.CrossRefGoogle Scholar
Juan, A., Crespo, M.B., Cowan, R.S., Lexer, C. & Fay, M.F. (2004) Patterns of variability and gene flow in Medicago citrina, an endangered endemic of islands in the western Mediterranean, as revealed by amplified fragment length polymorphism (AFLP). Molecular Ecology 13, 26792690.Google Scholar
Kaplinski, L., Andreson, R., Puurand, T. & Remm, M. (2005) MultiPLX: automatic grouping and evaluation of PCR primers. Bioinformatics 21, 17011702.CrossRefGoogle ScholarPubMed
Katayama, J. & Suzuki, I. (1984) Seasonal prevalence of pod borers (Ostrinia scapulalis, Maruca testulalis and Matsumuraeses sp.) in azuki-beans and injury caused by larval infestation. Bulletin of Kyoto Prefectural Institute of Agriculture 12, 2734.Google Scholar
Ke, L.D., Fang, J.L. & Li, Z.J. (1985) Bionomics and control of the legume pod-borer, Maruca testulalis Geyer. Acta Entomologica Sinica 28(1), 5159.Google Scholar
Kolfer, R., Scholtterer, C. & Lelley, T. (2007) SciRoKo: a new tool for whole genome microsatellite search and investigation. Bioinformatics 23, 16831685.Google Scholar
Lehmann, T., Besanky, N.J., Hawley, W.A., Fahey, T.G., Kamau, L. & Collins, F.H. (1997) Microgeographic structure of Anopheles gambiae in western Kenya based on mtDNA and microsatellite loci. Molecular Ecology 6, 243253.CrossRefGoogle ScholarPubMed
Margam, V.M., Coates, B.S., Hellmich, R.L., Agunbiade, T., Seufferheld, M.J., Sun, W., Ba, M.N., Sanon, A., Binso-Dabire, C.L., Baoua, I., Ishiyaku, M.F., Covas, F.G., Srinivasan, R., Armstrong, J., Murdock, L.L. & Pittendrigh, B.R. (2011) Mitochondrial genome sequence and expression profiling for the legume pod borer Maruca vitrata (Lepidoptera: Crambidae). PLoS ONE 6(2), e16444.Google Scholar
Meglécz, E., Pétenian, F., Danchin, E., D'Acier, A.C., Rasplus, J.Y. & Faure, E. (2004) High similarity between flanking regions of different microsatellites detected within each of two species of Lepidoptera: Parnassius apollo and Euphydryas aurinia. Molecular Ecology 13, 16931700.CrossRefGoogle ScholarPubMed
Miller, R.G. (1981) Simultaneous Statistical Inference. 2nd edn. New York, USA, Springer Verlag.Google Scholar
Morin, P.A., Luikart, G., Wayne, R.K. & Grp, S.W. (2004) SNPs in ecology, evolution and conservation. Trends in Ecology and Evolution 19(4), 208216.Google Scholar
Munroe, E.G. (1995) Pyraustinae. pp. 5879in Heppner, J.B. (Ed.) Atlas of Neotropical Lepidoptera. Checklist: Part 2 Hyblaeoidea, Pyraloidea, Tortricoidea. Gainesville, FL, USA, Association for Tropical Lepidoptera.Google Scholar
Nève, G. & Meglécz, E. (2000) Microsatellite frequencies in different taxa. Trends in Ecology and Evolution 15, 376377.CrossRefGoogle ScholarPubMed
Ortiz, R. (1998) Cowpeas from Nigeria: a silent food revolution. Outlook on Agriculture 27(2), 125128.Google Scholar
Paetkau, D., Waits, I.P., Clarkson, P.L., Craighead, I. & Strobeck, C. (1997) An empirical evaluation of genetic distance statistics using microsatellite data from bear (Ursidae) populations. Genetics 147, 19431957.CrossRefGoogle ScholarPubMed
Peterson, M.A. & Denno, R.F. (1998) Life history strategies and the genetic structure of phytophagous insect populations. pp. 253322in Mopper, S. & Strauss, S.Y. (Eds) Genetic Structure and Local Adaptation in Natural Insect Populations: Effects of Ecology, Life History, and Behaviour. New York, USA, Chapman and Hall.Google Scholar
Prasad, M.D., Muthulakshmi, M., Madhu, M., Archak, S., Mita, K. & Nagaraju, J. (2005) Survey and analysis of microsatellites in the silkworm, Bombyx mori: frequency, distribution, mutations, marker potential and their conservation in heterologous species. Genetics 169, 197214.CrossRefGoogle ScholarPubMed
Pritchard, J.K., Stephens, M. & Donnelly, P. (2000) Inference of population structure using multilocus genotype data. Genetics 155, 945959.Google Scholar
Raheja, A.I. (1974) Report on the insect pests of grain legumes in northern Nigeria. pp. 295299 in 1st IITA Grain Legume Improvement Workshop. Ibadan, Nigeria, International Institute of Tropical Agriculture.Google Scholar
Roderick, G.K. (1996) Geographic structure of insect populations: gene flow, phylogeography, and their uses. Annual Review of Entomology 41, 263290.Google Scholar
Roderick, G.K. & Navajas, M. (2003) Genes in new environment: genetics and evolution in biological control. Nature Reviews Genetics 4, 889899.Google Scholar
Rosenberg, N.A. (2004) Distruct: a program for the graphical display of population structure. Molecular Ecology Notes 4, 137138.CrossRefGoogle Scholar
Sawadogo, M., Ouedraogo, J.T., Balma, D., Ouedraogo, M., Gowda, B.S., Botanga, C. & Timko, M.P. (2009) The use of cross species SSR primers to study genetic diversity of okra from Burkina Faso. African Journal of Biotechnology 8, 24762482.Google Scholar
Sharma, H.C. (1998) Bionomics, host plant resistance, and management of the legume pod borer, Maruca vitrata: a review. Crop Protection 17, 373386.Google Scholar
Sharma, H.C., Saxena, K.B. & Bhagwat, V.R. (1999) The legume pod borer, Maruca vitrata: bionomics and management. Information bulletin 55. Patancheru, India, International Crops Research Institute for the Semi-arid Tropics (ICRISAT).Google Scholar
Singh, S.R. & Jackai, L.E.N. (1988) The legume pod-borer, Maruca testulalis (Geyer): past, present and future research. Insect Science and its Applications 9, l5.Google Scholar
Singh, S.R. & van Emden, H.F. (1979) Insect pests of grain legumes. Annual Review of Entomology 24, 255278.CrossRefGoogle Scholar
Singh, S.R., Jackai, L.E.N., Dos Santos, J.H.R. & Adalla, C.B. (1990) Insect pests of cowpea. pp. 4390in Singh, S.R. (Ed) Insect Pests of Tropical Food Legumes. Chichester, UK, John Wiley & Sons.Google Scholar
Slatkin, M. (1993) Isolation by distance in equilibrium and nonequilibrium populations. Evolution 47, 264279.Google Scholar
Slatkin, M. (1995) Hitchhiking and associative overdominance at a microsatellite locus. Molecular Biology and Evolution 12(3), 473480.Google Scholar
Tay, W.T., Behere, G.T., Batterham, P. & Heckel, D.G. (2010) Generation of microsatellite repeat families by RTE retrotransposons in Lepidopteran genomes. BMC Evolutionary Biology 10, 144.CrossRefGoogle ScholarPubMed
Taylor, T.A. (1967) The bionomics of Maruca testululis Gey. (Lepidoptera: Pyralidae), a major pest of cowpeas in Nigeria. Journal of West African Science Association 12, 111129.Google Scholar
Timmermans, M.J.T.N., Ellers, J., Marien, J., Verhoef, S.C., Ferwerda, E.B. & Van Straalen, N.M. (2005) Genetic structure in Orchesella cincta (Collembola): strong subdivision of European populations inferred from mtDNA and AFLP markers. Molecular Ecology 14, 20172024.Google Scholar
Van Oosterhout, C., Hutchinson, W.F., Wills, D.P.M. & Shirley, P. (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4(3), 535538.Google Scholar
Vignal, A., Milan, D., SanCristobal, M. & Eggen, A. (2002) A review on SNP and other types of molecular markers and their use in animal genetics. Genetics Selection Evolution 34(3), 275305.Google Scholar
Wang, J. & Whitlock, M.C. (2003) Estimating effective population size and migration rates from genetic samples over space and time. Genetics 163, 429446.Google Scholar
Weir, B.S. (1996) Genetic Data Analysis II. Sunderland, MA, USA, Sinauer.Google Scholar
Weir, B.S. & Cockerham, C.C. (1984) Estimating F-statistics for the analysis of population structure. Evolution 38, 13581370.Google Scholar
Wolcott, G.N. (1933) The lima bean pod borer caterpillars of Puerto Rico. Journal of the Department of Agriculture of Puerto Rico 17, 241255.Google Scholar
You, F.M., Hou, N., Gu, Y.Q., Lou, M., Ma, Y., Hane, D., Lazo, G.R., Dvorak, J. & Anderson, O.D. (2008) BatchPrimer3: A high throughput web application for PCR and sequencing primer design. BMC Bioinformatics 9, 253.CrossRefGoogle ScholarPubMed
Zhang, D.X. (2004) Lepidopteran microsatellite DNA: redundant but promising. Trends in Ecology and Evolution 19, 507509.Google Scholar
Zhang, D.X. & Hewitt, G.M. (2003) Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Molecular Ecology 12(3), 563584.Google Scholar
Supplementary material: File

Agunbiade supplementary material

Appendix

Download Agunbiade supplementary material(File)
File 69.1 KB