Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-03T15:23:36.358Z Has data issue: false hasContentIssue false

The singular insemination status of Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae: Scolytinae) females during the inter-harvest season of a coffee crop

Published online by Cambridge University Press:  05 December 2018

A.K. Román-Ruiz
Affiliation:
El Colegio de la Frontera Sur (ECOSUR), Carretera Antiguo Aeropuerto km 2.5, C.P. 30700; Tapachula, Chiapas, México Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Campus International de Baillarguet, TA A-106/D 34398 Montpellier Cedex 5, France
J.F. Barrera
Affiliation:
El Colegio de la Frontera Sur (ECOSUR), Carretera Antiguo Aeropuerto km 2.5, C.P. 30700; Tapachula, Chiapas, México
L. Cruz-López
Affiliation:
El Colegio de la Frontera Sur (ECOSUR), Carretera Antiguo Aeropuerto km 2.5, C.P. 30700; Tapachula, Chiapas, México
J.C. Rojas
Affiliation:
El Colegio de la Frontera Sur (ECOSUR), Carretera Antiguo Aeropuerto km 2.5, C.P. 30700; Tapachula, Chiapas, México
B.P. Dufour*
Affiliation:
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Campus International de Baillarguet, TA A-106/D 34398 Montpellier Cedex 5, France
*
*Author for correspondence Phone: 33 (0)4 67 59 37 10 Fax: 33 (0)4 67 59 38 73 E-mail: [email protected]

Abstract

The coffee berry borer, Hypothenemus hampei (Ferrari), can survive in residual coffee berries during the inter-harvest period, while new fructification only appears 2–3 months after the last harvest. The dispersal of colonizing females is an adaptation that enables the life cycle of the species to go ahead whenever his flight aptitude allows. This paper focuses on accurately determining the rate of inseminated females ready to reproduce when emerging from residuals berries to colonize new ones, which constitutes a characteristic of the live cycle far from common in Curculionidae. We dissected females caught in traps baited with a mixture of alcohols during the inter-harvest season, females from infested residual berries collected from branches, and virgin females obtained from pupae reared individually in the laboratory. After microscopic preparation with Giemsa stain, spermathecae were observed to identify the physiological status of each specimen. Out of the females found in the traps, 98.4% displayed recent and abundant insemination and 1.6% sporadic insemination. In contrast, in residual berries, most of females were recently inseminated (84.5%), followed by virgin females (10.5%) and older inseminated females (5%). In addition, the flight tests of the virgin females were negative. These results indicate that all colonizing females were inseminated, ready for flying and oviposition, females inside residual berries showed different physiological status, and virgin females could not migrate since they could not flight. The large number of inseminated females inside the residual berries, and the capacity of migrating females to colonize and reproduce, suggest that it is necessary to control residual berries and use traps to stop the dispersal and reproduction of this pest.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, P., Ley, C., Balbuena, R. & Barrera, J.F. (1992) Factors affecting the emergence of Hypothenemus hampei (Coleoptera: Scolytidae) from coffee berries. Bulletin of Entomological Research 82, 145150.10.1017/S000748530005166XGoogle Scholar
Barrera, J.F. (1994) Dynamique des populations du scolyte des berries du caféier, Hypothenemus hampei (Coleoptera: Scolytidae), et lutte biologique avec le parasitoïde Cephalonomia stephanoderis (Hymenoptera: Bethylidae), au Chiapas, Mexique. PhD Tesis, Université Paul Sabatier, Toulouse, Francia, 301 pp.Google Scholar
Barrera, J.F., Herrera, J., Villacorta, A., García, H. & Cruz, L. (2006) Trampas de metanol-etanol para detección, monitoreo y control de la broca del café Hypothenemus hampei. pp. 7183 in Barrera, J.F. & Montoya, P. (Eds) Simposio sobre Trampas y Atrayentes en Detección, Monitoreo y Control de Plagas de Importancia Económica. Manzanillo, Colima, México, Sociedad Mexicana de Entomología and El Colegio de la Frontera Sur.Google Scholar
Bates, D., Maechler, M., Bolker, B. & Walker, S. (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67(1), 148.10.18637/jss.v067.i01Google Scholar
Bergamin, J. (1943) Contribucao para o conhecimiento da biología da broca do café Hypothenemus hampei (Ferrari, 1867) (Col: Ipidae). Archives of the Institute of Biology 14, 3172.Google Scholar
Bleiker, K.P., Heron, R.J., Braithwaite, E.C. & Smith, G.D. (2013) Preemergence mating in the mass-attacking bark beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae). Canadian Entomologist 145, 1219.10.4039/tce.2012.102Google Scholar
Brun, L.O., Borsa, P., Gaudichon, V., Stuart, J.J., Aronstein, K., Coustau, C. & Ffrench-Constant, R.H. (1995) ‘Functional haplodiploidy’. Nature 374, 506.10.1038/374506a0Google Scholar
Damon, A. (2000) A review of the biology and control of the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae). Bulletin of Entomological Research 90, 453465.10.1017/S0007485300000584Google Scholar
Dufour, B.P., Franco Franco, F. & Hernández, A. (2007) Evaluación del trampeo en el marco del manejo integrado de la broca del café. pp. 8999. In Memoria: La Broca del Café en América Tropical: Hallazgos y Enfoques. Barrera, J.F., García, A., Domínguez, V. & Luna, C. (Eds). Workshop Internacional, junio 2007, Acapulco, Guerrero, México. Sociedad Mexicana de Entomología y El Colegio de la Frontera Sur, Tapachula, Chiapas, México.Google Scholar
Fedina, T.Y. & Lewis, S.M. (2008) An integrative view of sexual selection in Tribolium flour beetles. Biological Reviews 83, 151171.10.1111/j.1469-185X.2008.00037.xGoogle Scholar
Giordanengo, P. (1992) Biologie, éco-ethologie et dynamique des populations de Scolyte des grains de café, Hypothenemus hampei Ferr. (Coleoptera, Scolytidae), en Nouvelle-Calédonie. Mémoire de thèse de doctorat, Univers. Rennes I, 108 p.Google Scholar
Janin, J.L. & Lieutier, F. (1988) Existence de fécondations précoces dans le cycle biologique de Tomicus piniperda L. (Coleoptera Scolytidae) en forêt d'Orléans. Agronomie 8(2), 169172.10.1051/agro:19880211Google Scholar
Jaramillo, J., Borgemeister, C. & Baker, P.S. (2006) Coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae): searching for sustainable control strategies. Bulletin of Entomological Research 96, 223233.10.1079/BER2006434Google Scholar
Le Pelley, R.H. (1968) Pests of Coffee. ed. London, Longmans, Green and Co., Ltd.Google Scholar
Lévieux, J., Lieutier, F. & Delplanque, A. (1985) Les scolytes ravageurs de l’épicéa. Revue Forestière Française 37(5), 347358.10.4267/2042/21822Google Scholar
Lopez, A. (1993) Contribution à la biologie du scolyte du café (Hypothenemus hampei (Ferr.) (Coleoptera: Scolytidae). Mémoire de DEA, Université Paris XIII, 25 p.Google Scholar
López-Guillén G., , Valdez-Carrasco, J., Cruz-López, L., Barrera, J.F., Malo, E.A. & Rojas, J.C. (2011) Morphology and structural changes in flight muscles of Hypothenemus hampei (Coleoptera: Curculionidae) females. Environmental Entomology 40, 441448.10.1603/EN10181Google Scholar
Mathieu, F., Brun, J.O. & Frérot, B. (1997) Factors related to native host abandonment by the coffee berry borer Hypothenemus hampei (Ferr.) (Col., Scolytidae). Journal of Applied Entomology 121, 175180.10.1111/j.1439-0418.1997.tb01389.xGoogle Scholar
Mathieu, F., Gaudichon, V., Brun, L.O. & Frérot, F. (2001) Effect of physiological status on olfactory and visual responses of female Hypothenemus hampei during host plant colonization. Physiological Entomology 26, 189193.10.1046/j.1365-3032.2001.00232.xGoogle Scholar
Pascini, T.V. & Martins, G.F. (2016) The insect spermatheca: an overview. Zoology 21, 5671.Google Scholar
R Core Team (2017) R: A Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing. Available online at https://www.R-project.org/.Google Scholar
Roman-Ruiz, A.K., Michel, B., Dufour, B.D., Rojas, J.V., Cruz-Lopez, L. & Barrera, J.F. (2017) Description of the sperm and the spermatheca of Hypothenemus hampei (Coleoptera: Curculionidae: Scolytinae) for the differentiation of mated and unmated females. Annals of the Entomological Society of America 110(4), 353359. doi: 10.1093/AESA/SAX033.Google Scholar
Silva, W.D., Moreira, C.C. & Bento, J.M.S. (2014) How old are colonizing Hypothenemus hampei (Ferrari) females when they leave the native coffee fruit? Journal of Insect Behavior 27, 729735.10.1007/s10905-014-9464-2Google Scholar
Ticheler, J. (1961) Etude analytique de l’épidémiologie du scolyte des graines de café, Stephanoderes hampei Ferr. en Côte d'Ivoire. Landbouwhogeschool, Wageningen 61, 149.Google Scholar
Waterhouse, D.F. & Norris, K.R. (1989) Biological Control: Pacific Prospects-Supplement 1. Centre for International Agricultural Research (ACIAR), Canberra Australia, Monograph No. 12, vii + 125 p.Google Scholar