Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T06:37:44.810Z Has data issue: false hasContentIssue false

The significance of proleg disruption by chlordimeform to sublethal control of larvae of Pieris brassicae (L.) (Lepidoptera: Pieridae) in the field

Published online by Cambridge University Press:  10 July 2009

Alison Blackwell
Affiliation:
Department of Zoology, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK

Abstract

The results of field trials in the UK are reported, investigating the hypothesis that the disruption of proleg clasping in lepidopteran larvae by sublethal doses of the formamidine pesticide chlordimeform contributes significantly to a control mechanism. Pieris brassicae (L.) was used as a model pest. Topically dosed third-instar larvae, placed on cabbage plants, became excited and many fell. Although the behavioural symptoms were reversible within 24 h, fallen larvae rarely re-established themselves on the plants. The ED50 halving the initial population was similar to the ED50 for proleg disruption, emphasizing the importance of the latter as a major cause of the former. Arthropod or bird predation was not shown to increase following chlordimeform treatment. However, inclement weather did enhance the detaching effect of treatment and also its delayed effects on larval development and survival.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide.—J. econ. Ent. 18, 265267.CrossRefGoogle Scholar
Antonious, A. G. & Saito, T. (1981). Mode of action of antifeeding compounds in the larvae of the tobacco cutworm, Spodoptera litura (F.) (Lepidoptera: Noctuidae). I. Antifeeding activities of chlordimeform and some plant diterpenes.—Appl. Entomol. & Zool. 16, 328334.CrossRefGoogle Scholar
Antonious, A. G. & Saito, T. (1983). Mode of action of antifeeding compounds in the larvae of the tobacco cutworm, Spodoptera litura (F.) (Lepidoptera: Noctuidae). III. Sensory responses of the larval chemoreceptors to chlordimeform and clerodin.—Appl. Entomol. & Zool. 18, 4049.CrossRefGoogle Scholar
Ashby, J. W. (1974). A study of arthropod predation of Pieris rapae L. using serological and exclusion techniques.—J. appl. Ecol. 11, 419425.CrossRefGoogle Scholar
Ashby, J. W. & Pottinger, R. P. (1974). Natural regulation of Pieris rapae Linnaeus (Lepidoptera: Pieridae) in Canterbury, New Zealand.—N.Z. Jl agric. Res. 17, 229239.CrossRefGoogle Scholar
Baker, R. R. (1970). Bird predation as a selective pressure on the immature stages of the cabbage butterflies, Pieris rapae and P. brassicae.—J. Zool. 162, 4359.Google Scholar
Bell, W. J. (1985). Sources of information controlling motor patterns in arthropod local search orientation.—J. Insect Physiol. 31, 837847.CrossRefGoogle Scholar
Blackwell, A. (1987). The behavioural effects of formamidine pesticides in Lepidoptera.—307 pp. Ph.D. thesis, Univ. Bristol.Google Scholar
Blackwell, A. & Cox, S. (1986). The disruption of proleg clasping by sublethal doses of chlordime form in silk moth larvae: a possible mechanism of crop protection.—Entomologia exp. appl. 42, 917.Google Scholar
Dempster, J. P. (1967). The control of Pieris rapae with DDT. I. The natural mortality of the young stages of Pieris.—J. appl. Ecol. 4, 485500.Google Scholar
Dempster, J. P. (1969). Some effects of weed control on the numbers of the small cabbage white (Pieris rapae L.) on brussels sprouts.—J. appl. Ecol. 6, 339345.CrossRefGoogle Scholar
Dittrich, V. & Lončarević, A. (1971). New insecticides for Asiatic rice borer control in paddy rice.—J. econ. Ent. 64, 12251229.CrossRefGoogle ScholarPubMed
Doane, C. C. & Dunbar, D. M. (1973). Field evaluation of insecticides against the gypsy moth and the elm spanworm and repellent action of chlordime form.—J. econ. Ent. 66, 11871189.Google Scholar
Ghobrial, A. & Dittrich, V. (1980). Early and late pest complexes on cotton, their control by aerial and ground application of insecticides and side-effects on the predator fauna.—Z. angew. Ent. 90, 306313.Google Scholar
Harcourt, D. G. (1966). Major factors in survival of the immature stages of Pieris rapae (L.).—Can. Ent. 98, 653662.CrossRefGoogle Scholar
Hasui, H. (1977). On the seasonal variability of survivorship curves and life tables of Pieris rapae crucivora Boisduval (Lepidoptera: Pieridae).—Jap. J. Ecol. 27, 7582.Google Scholar
Hirano, T., Kawasaki, H., Shinohara, H., Kitagaki, T. & Wakamori, S. (1972). Studies on some biological activities of N-(2-methyl-4-chlorophenyl)-N′, N′-dimethylformamidine (Galecron) to the rice stem borer, Chilo suppressalis Walker.—Botyu-Kagaku 37, 135141.Google Scholar
Hollingworth, R. M. (1976). Chemistry, biological activity, and uses of formamidine pesticides.— Environ. Hlth Perspect. 14, 5769.Google Scholar
Inoko, H., Katsuki, M. & Watanabe, I. (1981). Suppression of phototaxis in silkworm larvae.—Anim. Behav. 29, 873877.CrossRefGoogle Scholar
Itô, Y., Miyashita, K. & Gotoh, A. (1960). Natural mortality of the common cabbage butterfly, Pieris rapae crucivora Boisduval, with considerations on the factors affecting it.—Jap. J. appl. Ent. Zool. 4, 110.CrossRefGoogle Scholar
Johnson, E. L. (1977). Pesticide products containing amitraz. Notice of rebuttable presumption against registration and continued registration.—Fed. Regist. 42, 1829918302.Google Scholar
Kennedy, J. S. (1978). The concepts of olfactory ‘arrestment’ and ‘attraction’.—Physiol. Entomol. 3, 9198.CrossRefGoogle Scholar
Khattar, P. & Saxena, K. N. (1978). Interaction of visual and olfactory stimuli determining orientation of Papilio demoleus larvae.—J. Insect Physiol. 24, 571576.Google Scholar
Lingren, P. D., Wolfenbarger, D. A., Nosky, J. B. & Diaz, M. Jr. (1972). Response of Campoletis perdistinctus and Apanteles Marginiventris to insecticides.—J. econ. Ent. 65, 12951299.CrossRefGoogle ScholarPubMed
Matthews, G. A. (1984). Appendix 1. Calculation of the regression line relating to probits and logdose.—pp. 183–188 in Pest management.—231 pp. Harlow, Essex, UK, Longman.Google Scholar
McEwen, L. C., DeWeese, L. R. & Schladweiler, P. (1986). Bird predation on cutworms (Lepidoptera: Noctuidae) in wheat fields and chlorpyrifos effects on brain cholinesterase activity.—Environ. Entomol. 15, 147151.CrossRefGoogle Scholar
McFarlane, R. W. (1976). Birds as agents of biological control.—Biologist 58, 123140.Google Scholar
Pitts, D. L. & Pieters, E. P. (1982). Toxicity of chlordimeform and methomyl to predators of Heliothis spp. on cotton.—J. econ. Ent. 75, 353355.CrossRefGoogle Scholar
Plapp, F. W. Jr. & Bull, D. L. (1978). Toxicity and selectivity of some insecticides to Chrysopa carnea, a predator of the tobacco budworm.—Environ. Entomol. 7, 431434.CrossRefGoogle Scholar
Reichenbach, N. G. & Stairs, G. R. (1984). Response of the western spruce budworm (Lepidoptera: Tortricidae) to temperature and humidity: developmental rates and survivorship.—Environ. Entomol. 13, 611618.CrossRefGoogle Scholar
Reynolds, S. E. & Nottingham, S. F. (1985). Effects of temperature on growth and efficiency of food utilization in fifth-instar caterpillars of the tobacco hornworm, Manduca sexta.—J. Insect Physiol. 31, 129134.CrossRefGoogle Scholar
Saxena, K. N., Khattar, P. & Goyal, S. (1977). Measurement of Orientation responses of caterpillars indoors and outdoors on a grid.—Experientia 33, 13121313.CrossRefGoogle Scholar
Saxena, K. N. & Prabha, S. (1975). Relationship between the olfactory sensilla of Papilio demoleus L. larvae and their orientation responses to different odours.—J. Entomol. (A) 50, 119126.Google Scholar
Schöne, H. (1984). Spatial orientation. The spatial control of behavior in animals and man.—347 pp. Princeton, N.J., Princeton Univ. Press (Princeton Series in Neurobiology and Behavior).CrossRefGoogle Scholar
Shimizu, T. & Fukami, J. (1984). Site of chlordimeform action of the continuous burst of mandibular movements in the cabbage armyworm, Mamestra brassicae L. (Lepidoptera:Noctuidae).—Appl. Entomol. & Zool. 19, 393395.CrossRefGoogle Scholar
Shimizu, T., Matsuzawa, K. & Fukami, J. (1981). Effect of chlordimeform and its analogues on mandibular movements of the cabbage armyworm, Mamestra brassicae L. (Lepidoptera:Noctuidae).—Appl. Entomol. & Zool. 16, 167169.Google Scholar
Uk, S. & Dittrich, V. (1986). The behaviour-modifying effect of chlordimeform and endosulfan on the adult whitefly Bemisia tabaci (Genn.) which attacks cotton in the SudanCrop Prot. 5, 341347.CrossRefGoogle Scholar
Watanabe, H. & Fukami, J. I. (1977). Stimulating action of chlordimeform and desmethyl chlordimeform on motor discharges of armyworm, Leucania separata (Walker) (Lepidoptera:Noctuidae).—J. Pestic. Sci. 2, 297302.Google Scholar
Wolfenbarger, D. A., Gomes, E. D., Robinson, S. H. & Parks, L. H. (1979). Chlordimeform residues from cotton leaves.—J. econ. Ent. 72, 128130.CrossRefGoogle Scholar