Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-20T05:05:41.876Z Has data issue: false hasContentIssue false

A sensitive and efficient isoenzyme technique for small arthropods and other invertebrates

Published online by Cambridge University Press:  10 July 2009

Simon Easteal
Affiliation:
Department of Population Biology, Research School of Biological Sciences, Australian National University, Canberra, A.C.T. 2601, Australia
Ian A. Boussy
Affiliation:
Department of Population Biology, Research School of Biological Sciences, Australian National University, Canberra, A.C.T. 2601, Australia

Abstract

An electrophoretic method for the study of enzyme variation, which uses cellulose acetate sheets with an agar overlay for staining, the use of a very good general purpose buffer (citric-aminopropyldiethanol amine) and the use of sodium azide as a bacteriocide to allow long term storage of chemicals as solutions are described. Tests are reported of the technique on Tetranychus urticae Koch, Aedes aegypti (L.) and several species of Drosophila. The results demonstrate that the technique offers sensitivity equal to or greater than starch or polyacrylamide gel electrophoresis and that it is applicable to very small organisms, allowing either the testing of single individuals for large numbers of enzymes or the testing of fewer enzymes under different electrophoretic conditions (i.e. to detect cryptic variation under a single condition). The technique is efficient of time and materials, and safer than conventional methods.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berlocher, S. H. & Bush, G. L. (1982). An electrophoretic analysis of Rhagoletis (Diptera: Tephritidae) phylogeny.—Syst. Zool. 31, 136155.CrossRefGoogle Scholar
Brewer, G. J. (1970). An introduction to isozyme techniques.—186 pp. New York, Academic Press.Google Scholar
Brookes, C. P. & Loxdale, H. D. (1985). A device for simultaneously homogenizing numbers of individual small insects for electrophoresis.—Bull. ent. Res. 75, 377378.CrossRefGoogle Scholar
Buth, D. G. (1984). The application of electrophoretic data in systematic studies.—Annu. Rev. Ecol. & Syst. 15, 501522.CrossRefGoogle Scholar
Castañera, P., Loxdale, H. D. & Nowak, K. (1983). Electrophoretic study of enzymes from cereal aphid populations. II. Use of electrophoresis for identifying aphidiid parasitoids (Hymenoptera) of Sitobion avenae (F.) (Hemiptera: Aphididae).—Bull. ent. Res. 73, 659665.CrossRefGoogle Scholar
Clayton, J. W. & Tretiak, D. N. (1972). Amine-citrate buffers for pH control in starch gel electrophoresis.—J. Fish. Res. Bd Can. 29, 11691172.CrossRefGoogle Scholar
Coyne, J. A. (1976). Lack of genic similarity between two sibling species of Drosophila as revealed by varied techniques.—Genetics 84, 593607.CrossRefGoogle ScholarPubMed
Coyne, J. A. (1982). Gel electrophoresis and cryptic protein variation.—pp. 132in Ratazzi, M. C., Scandalios, J. C. & Whitt, G. S. (Eds.). Isozymes: current topics in biology and medicine, vol. 6.—297 pp. New York, Alan Liss.Google Scholar
Eisses, K. T., van Duk, H. & van Delden, W. (1979). Genetic differentiation within the melanogaster species group of the genus Drosophila (Sophophora).—Evolution 33, 10631068.CrossRefGoogle ScholarPubMed
Gonzalez, A. M., Cabrera, V. M., Larruga, J. M. & Gulton, A. (1982). Genetic distance in the sibling species Drosophila melanogaster, Drosophila simulans and Drosophila mauritiana.—Evolution 36, 517522.CrossRefGoogle ScholarPubMed
Harris, H. & Hopkinson, D. A. (1976). Handbook of enzyme electrophoresis in human genetics.—306 pp. Amsterdam, North-Holland.Google Scholar
Holmes, R. S. (1978). Electrophoretic analyses of alcohol dehydrogenase, aldehyde dehydrogenase, aldehyde oxidase, sorbitol dehydrogenase and xanthine oxidase from mouse tissues.—Comp. Biochem. Physiol. 61, 339346.Google ScholarPubMed
Keith, T. P. (1983). Frequency distribution of esterase-5 alleles in two populations of Drosophila pseudoobscura.—Genetics 105, 135155.CrossRefGoogle ScholarPubMed
Keith, T. P., Brooks, L. D., Lewontin, R. C., Martinez-Cruzado, J. C. & Rigby, D. L. (1985). Nearly identical allelic distributions of xanthine dehydrogenase in two populations of Drosophila pseudoobscura.—Mol. Biol. Evol. 2, 206216.Google ScholarPubMed
Loverre-Chyurlia, A. & Carmody, G. (1985). Electrophoretic and heat-stability polymorphism at the phosphoglucomutase (Pgm) locus in natural populations of Drosophila melanogaster.—Biochem. Genet. 23, 2936.CrossRefGoogle ScholarPubMed
Loxdale, H. D., Castañera, P. & Brookes, C. P. (1983). Electrophoretic study of enzymes from cereal aphid populations. I. Electrophoretic techniques and staining systems for characterising isoenzymes from six species of cereal aphids (Hemiptera: Aphididae).—Bull. ent. Res. 73, 645657.CrossRefGoogle Scholar
Murray, R. A. & Solomon, M. G. (1978). A rapid technique for analysing diets of invertebrate predators by electrophoresis.—Ann. appl. Biol. 90, 710.CrossRefGoogle Scholar
Powell, J. R., Tabachnick, W. J. & Wallis, G. P. (1982). Aedes aegypti as a model of the usefulness of population genetics of vectors.—pp. 396412in Steiner, W. W. M., Tabachnick, W. J., Rai, K. S. & Narang, S. (Eds.). Recent developments in the genetics of insect disease vectors.—665 pp. Champaign, Illinois, Stipes.Google Scholar
Shaw, C. R. & Prasad, R. (1970). Starch gel electrophoresis of enzymes—a compilation of recipes.—Biochem. Genet. 4, 297320.CrossRefGoogle ScholarPubMed
Siciliano, M. J. & Shaw, C. R. (1976). Separation and visualization of enzymes on gels.—pp. 185209in Smith, I. (Ed.). Chromatography and electrophoresis. Vol. II. Zone electrophoresis.—485 pp. London, Heinemann.Google Scholar
Simon, C. M. (1979). Evolution of periodical cicadas: phylogenetic inferences based on allozymic data.—Syst. Zool. 28, 2239.CrossRefGoogle Scholar
Singh, R. S., Lewontin, R. C. & Felton, A. A. (1976). Genetic heterogeneity within electrophoretic "alleles" of xanthine dehydrogenase in Drosophila pseudoobscura.Genetics 84, 609629.CrossRefGoogle ScholarPubMed
Snyder, T. P. & Linton, M. C. (1984). Population structure in blackflies: allozymic and morphological estimates for Prosimulium mixtum and P. fuscum (Diptera: Simulidae).—Evolution 38, 942956.CrossRefGoogle Scholar
Šula, J. & Weyda, F. (1983). Esterase polymorphism in several populations of the two-spotted spider mite, Tetranychus urticae Koch.—Experientia 39, 7879.Google Scholar
Ward, P. S. (1980). Genetic variation and population differentiation in the Rhytidoponera impressa group, a species complex of ponerine ants (Hymenoptera: Formicidae).—Evolution, Lawrence, Kans. 34, 10601076.CrossRefGoogle Scholar
Ward, P. S., Boussy, I. A. & Swincer, D. E. (1982). Electrophoretic detection of enzyme polymorphism and differentiation in three species of spider mites (Tetranychus) (Acari: Tetranychidae).—Ann. ent. Soc. Am. 75, 595598.CrossRefGoogle Scholar