Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T15:01:04.049Z Has data issue: false hasContentIssue false

Seasonal trends in the rate of population increase of Frankliniella occidentalis (Thysanoptera: Thripidae) on cucumber

Published online by Cambridge University Press:  10 July 2009

V. Jarošík
Affiliation:
Department of Zoology, Faculty of Sciences, Charles University, Viničná 7, 128 44 Prague 2, Czech Republic
M. Koliáš
Affiliation:
Department of Zoology, Faculty of Sciences, Charles University, Viničná 7, 128 44 Prague 2, Czech Republic
L. Lapchin
Affiliation:
INRA, Unité de Biologie des Populations, Antibes, France
J. Rochat
Affiliation:
INRA, Unité de Biologie des Populations, Antibes, France
A.F.G. Dixon
Affiliation:
School of Biological Sciences, University of East Anglia, Norwich, UK

Abstract

The developmental rate of Frankliniella occidentalis (Pergande) was determined on cucumber Cucumis sativus cv. Sandra over a range of constant temperatures. The lower developmental threshold (LDT) and the sum of effective temperatures (SET) for the pre-imaginal development were 10.7°C and 231.1°C, respectively. The rate of population increase was assessed as the sum of effective temperatures above the lower developmental threshold by monitoring the numbers of thrips on individual leaves of cucumber under commercial greenhouse conditions. Population growth was characterized by an early stochastic phase, corresponding to pre-imaginal development of the first generation, and followed by an exponential phase starting with the second generation, the rate of which did not vary between plants. Throughout the exponential phase, the rate of population growth increased with time/age of plant. As significant damage to cucumber may occur during the exponential phase of population increase, the sum of effective temperatures of 231°C can be used to predict when damage is likely to start to occur.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bene, G. & Gargani, E. (1989) Contributo alla conoscenza di Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Redia 72, 403420.Google Scholar
Broadbent, A.B., Allen, W.R. & Foottit, R.G. (1987) The association of Frankliniella occidentalis (Pergande) (Thysanoptera, Thripidae) with greenhouse crops and the tomato spotted wilt virus in Ontario. Canadian Entomologist 119, 501503.Google Scholar
Brodsgaard, H.F. (1994) Effect of photoperiod on the bionomics of Frankliniella occidentalis (Pergande) (Thysanoptera, Thripidae). Journal of Applied Entomology 117, 498507.Google Scholar
Bryan, D.E. & Smith, R.F. (1956) The Frankliniella occidentalis (Pergande) complex in California (Thysanoptera: Thripidae). University of California Publications in Entomology 10, 359410.Google Scholar
Bünte, R., Kuo-Sell, H.-L. & Sell, P. (1990) Prädation von Frankliniella occidentalis (Thysanoptera: Thripidae) durch die Raubwanzen Anthocoris nemorum and Anthocoris gallarum-ulmi (Heteroptera: Anthocoridae). Mededelingen Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent 55, 323–234.Google Scholar
Carter, N. & Dixon, A.F.G. (1981) The “natural enemy ravine” in cereal aphid population dynamics: a consequence of predator activity or aphid biology. Journal of Animal Ecology 50, 605611.CrossRefGoogle Scholar
Fennah, R.G. (1963) Nutritional factors associated with seasonal population increases of cacao thrips, Selenothrips rubrocinctus (Giard) (Thysanoptera), on cashew, Anacardium occidentale. Bulletin of Entomological Research 53, 681713.CrossRefGoogle Scholar
Francis, B., Green, M. & Payne, C. (Eds) (1994) The GLIM system. Release 4 manual. 821 pp. Oxford, Clarendon Press.Google Scholar
Gaum, W.G., Giliomee, J.H. & Pringle, K.L. (1994) Life history and life tables of western flower thrips, Frankliniella occidentalis (Thysanoptera, Thripidae), on English cucumbers. Bulletin of Entomological Research 84, 219224.CrossRefGoogle Scholar
Gilchrist, R. & Green, P. (1994) The theory of generalized linear models. pp. 259305in Francis, B., Green, M. & Payne, C. (Eds) The GLIM system. Release 4 manual. Oxford, Clarendon Press.Google Scholar
Gilkeson, L.A., Morewood, W.D. & Elliot, D.E. (1990) Current status of biological control of thrips in Canadian greenhouses with Amblyseius cucumeris and Orius tristicolor. IOB/WPRS Bulletin 13, 7175.Google Scholar
Grassely, D., Trottin-Caudal, Y. & Trapateau, M. (1988) Contribution à l'étude de la biolo/gie de Frankliniella occidentalis sur cocombre. 6 pp. Ctifl Balandran, fiche technique.Google Scholar
Hansen, L.S. (1988) Control of Thrips tabaci (Thysanoptera: Thripidae) on glasshouse cucumber using large introductions of predatory mites Amblyseius barkeri (Acarina: Phytoseiidae). Entomophaga 33, 3342.CrossRefGoogle Scholar
Hansen, L.S. (1989) The effect of initial thrips density (Thrips tabaci Lind. (Thysanoptera, Thripidae)) on the control exerted by Amblyseius barkeri (Hughes) (Acari, Phytoseiidae) on glasshouse cucumber. Journal of Applied Entomology 107, 130135.Google Scholar
Hansen, L.S. & Geyti, J. (1987) Possibilities and limitations of the use of Amblyseius mckenziei Sch & Pr for biological control of thrips (Thrips tabaci Lind.) on glasshouse crops of cucumber. pp. 145150in Cavalloro, R. (Eds) Integrated and biological control in protected crops. Rotterdam, Balkema.Google Scholar
Higgins, C.J. (1992) Western flower thrips (Thysanoptera: Thripidae) in greenhouses: population dynamics, distribution on plants, and associations with predators. Journal of Economic Entomology 85, 18911903.CrossRefGoogle Scholar
Higgins, C.J. & Myers, J.H. (1992) Sex ratio patterns and population dynamics of western flower thrips (Thysanoptera: Thripidae). Environmental Entomology 21, 322330.CrossRefGoogle Scholar
Immaraju, J.A., Paine, T.D., Bethke, J.A., Robb, K.L. & Newman, J.P. (1992) Western flower thrips (Thysanoptera: Thripidae) resistance to insecticides in coastal California greenhouses. Journal of Economic Entomology 85, 914.CrossRefGoogle Scholar
Jarošík, V. & Plíva, J. (1995) Assessment of Amblyseius barkeri (Acarina: Phytoseiidae) as a control agent for thrips on greenhouse cucumbers. Acta Societas Zoologicae Bohemoslovaca 59, 177186.Google Scholar
Jarošík, V., Honěk, A., Lapchin, L. & Rabasse, J.-M. (1996) An assessment of time varying rate of increase of green peach aphid, Myzus persicae: its importance in IPM of commercial greenhouse peppers. Ochrana Rostlin 32, 269276.Google Scholar
Kawai, A. & Kitamura, C. (1987) Studies on population ecology of Thrips palmi Karny. XV. Evaluation of effectiveness of control methods using a simulation model. Japanese Journal of Applied Entomology and Zoology 22, 292302.CrossRefGoogle Scholar
Lewis, T. (1973) Thrips – their biology, ecology, and practical importance. 297 pp. London, Academic Press.Google Scholar
Lowry, V.K.J.W., Smith, J.R. & Mitchell, F.L. (1992) Life-fertility tables for F. fusca (Hinds) and F. occidentalis (Pergande) (Thysanoptera: Thripidae) on peanut. Annals of the Entomological Society of America 85, 744754.Google Scholar
Lublinkhof, J. & Foster, D.E. (1977) Development of reproductive capacity of Frankliniella occidentalis reared at three temperatures. Journal of the Kansas Entomological Society 50, 313316.Google Scholar
Malais, M. & Ravensberg, W.J. (1992) Knowing and recognizing. The biology of glasshouse pests and their natural enemies. 109 pp. Koppert, B.V., Berkel en Rodenrijs.Google Scholar
Mattson, W.J. & Haack, R.A. (1987) The role of drought in outbreaks of plant-eating insects. BioScience 37, 110118.Google Scholar
Mertz, D.B. (1970) Notes on methods used in life-history studies. pp. 417in Connell, J.H., Connell, D.B. & Murdoch, W.W. (Eds) Readings in ecology and ecological genetics. New York, Harper and Row.Google Scholar
Mollema, C., Steenhuis, G. & van Rijn, P. (1990) Development of a method to test resistance to western flower thrips (Frankliniella occidentalis) in cucumber. IOBC/WPRS Bulletin 13, 113116.Google Scholar
Pedigo, L.P., Scott, H. & Higley, L.G. (1986) Economic injury levels in theory and practice. Annual Review of Entomology 31, 341368.Google Scholar
Pelikán, J. (1989) A new imported pest of greenhouse plants, the western flower thrips, Frankliniella occidentalis (Pergande, 1985). Ochrana Rostlin 25, 271278.Google Scholar
Plíva, J. & Jarošík, V. (1991) Biological control of thrips (Thysanoptera, Thripidae) on greenhouse cucumbers. pp. 363364in Proceedings of XII Czech Plant Protection Conference. Prague, ČSVTS.Google Scholar
Ravensberg, W. & Altena, K. (1987) Recent developments in the control of thrips in sweet pepper and cucumber. IOBC/WPRS Bulletin 10, 160164.Google Scholar
Robb, K.L. (1989) Analysis of Frankliniella occidentalis (Pergande) as a pest of floricultural crops in California greenhouses. PhD Thesis, California, University of Riverside.Google Scholar
Robb, K.L. & Parrella, M.P. (1991) Western flower thrips, a serious pest of floricultural crops. in Proceeding of International Conference on Thrips February 21–23, 1989. Burlington, Vermont, USA.Google Scholar
Rosenheim, J.A., Welter, S.C., Johnson, M.W., Man, R.F.L. & Gusukuma-Minuto, L.R. (1990) Direct feeding damage on cucumber by mixed-species infestations of Thrips palmi and Frankliniella occidentalis (Thysanoptera: Thripidae). Journal of Economic Entomology 83, 15191525.Google Scholar
Sakimura, K. (1962) Frankliniella occidentalis a vector of tomato spotted wilt virus with special reference to the colour forms. Annals of the Entomological Society of America 55, 387389.Google Scholar
Sharpe, F.R. & Lotka, A.J. (1911) A problem in age-distribution. Philosophical Magazine, Series 6, 21, 435438.Google Scholar
Sokal, R. & Rohlf, F.J. (1981) Biometry. 2nd edn.859 pp. San Francisco, Freeman.Google Scholar
Soria, C. & Mollema, C. (1995) Life-history parameters of western flower thrips on susceptible and resistant cucumber genotypes. Entomologia Experimentalis et Applicata 74, 177184.Google Scholar
Steiner, M.Y. (1990) Determining population characteristics and sampling procedures for the western flower thrips (Thysanoptera: Thripidae) and the predatory mite Amblyseius cucumeris (Acari: Phytoseiidae) on greenhouse cucumber. Environmental Entomology 19, 16051613.CrossRefGoogle Scholar
Terry, L.I. & Kelly, C.K. (1993) Patterns of change in secondary and tertiary sex ratios of the Terebrantian thrips, Frankliniella occidentalis. Entomologia Experimentalis et Applicata 66, 216225.CrossRefGoogle Scholar
Teulon, D.A.J. (1992) Laboratory technique for rearing western flower thrips (Thysanoptera: Thripidae). Journal of Economic Entomology 85, 895899.CrossRefGoogle Scholar
Trichilo, P.J. & Leigh, T.F. (1988) Influence of resource quality on the reproductive fitness of flower thrips (Thysanoptera: Thripidae). Annals of the Entomological Society of America 81, 6470.CrossRefGoogle Scholar
Turek, M. (1981) Vegetable growing. 256 pp. Prague, SZN. (In Czech).Google Scholar
van de Veire, M. & Degheele, D. (1992) Biological control of the western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), in glasshouse sweet peppers with Orius spp. (Hemiptera: Anthocoridae). A comparative study between O. niger (Wolff) and O. insidiosus (Say). Biocontrol Science and Technology 2, 281283.Google Scholar
van Rijn, , Mollema, C. & Steenhuis-Broers, G.M. (1995) Comparative life-history studies of Frankliniella occidentalis and Thrips tabaci (Thysanoptera: Thripidae) on cucumber. Bulletin of Entomological Research 85, 285297.CrossRefGoogle Scholar
Welter, S.C., Rosenheim, J.A., Johnson, M.V., Mau, R.F.L. & Gusukuma-Minuto, L.R. (1990) Effects of Thrips palmi and western flower thrips (Thysanoptera: Thripidae) on the yield, growth, and carbon allocation pattern in cucumbers. Journal of Economic Entomology 83, 20922101.CrossRefGoogle Scholar