Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-22T07:40:48.881Z Has data issue: false hasContentIssue false

Resistance to deltamethrin in Triatoma infestans: microgeographical distribution, validation of a rapid detection bioassay and evaluation of a fumigant canister as control alternative strategy

Published online by Cambridge University Press:  30 April 2020

Carolina Remón
Affiliation:
Laboratorio de Investigación en Triatominos (LIT), Centro de Referencia de Vectores (CeReVe), Ministerio de Salud y Desarrollo Social de la Nación, Hospital Colonia-Pabellón Rawson calle s/n, Santa María de Punilla, Córdoba, Argentina
Georgina Fronza
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina Centro de Investigaciones de Plagas e Insecticidas (CONICET-CITEDEF), Juan Bautista de La Salle 4397, B1603ALO, Villa Martelli, Provincia de Buenos Aires, Argentina
Yanina Maza
Affiliation:
Ministerio de Salud del Chaco, Marcelo T de Alvear 145, H3500BLC, Resistencia, Chaco, Argentina
Paula Sartor
Affiliation:
Ministerio de Salud del Chaco, Marcelo T de Alvear 145, H3500BLC, Resistencia, Chaco, Argentina Facultad de Ciencias Exactas, Naturales y Agrimensura, Universidad Nacional del Nordeste, Avenida Libertad, W3400CDH, Corrientes Capital, Argentina
Diego Weinberg
Affiliation:
Fundación Mundo Sano, C.A.B.A., Argentina
Gastón Mougabure-Cueto*
Affiliation:
Laboratorio de Investigación en Triatominos (LIT), Centro de Referencia de Vectores (CeReVe), Ministerio de Salud y Desarrollo Social de la Nación, Hospital Colonia-Pabellón Rawson calle s/n, Santa María de Punilla, Córdoba, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
*
Author for correspondence: Gastón Mougabure-Cueto, Email: [email protected]

Abstract

Triatoma infestans (Klug) (Hemiptera: Reduviidae) is the main vector of Chagas disease in the Southern Cone of America and resistance to pyrethroid insecticides has been detected in several areas from its geographical distribution. Pyrethroid resistance presents a complex geographical pattern at different spatial scales. However, it is still unknown if the toxicological variability is a common feature within villages of the Gran Chaco were high resistance was descripted. The objectives of this study were to determine: (a) the microgeographical distribution of the deltamethrin-resistance in insects from Pampa Argentina village, (b) the performance of the insecticide impregnated paper bioassay to evaluate deltamethrin-resistance in field collected insects and (c) the lethal activity of the fumigant canister containing DDVP against insects resistant to deltamethrin. High survival of T. infestans exposed to discriminant dose was observed in the samples of all the evaluated dwellings, suggesting that the resistance to deltamethrin is homogeneous at the microgeographical level. Resistance determination by impregnated paper bioassay was similar to traditional topical determination, highlighting the use of this rapid methodology in field large-scale monitoring. The fumigant canister was not effective against resistant insects, remarking the need to develop suitable formulations that ensure minimal toxicological risk and high effectivity.

Type
Research Paper
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, WS (1925) A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18, 265267.CrossRefGoogle Scholar
Arnaud, LE, Haubruge, E and Gage, MJG (2005) The malathion-specific resistance gene confers a sperm competition advantage in Tribolium castaneum. Functional Ecology 19, 10321039.CrossRefGoogle Scholar
Bustamante-Gomez, M, Gonçalves Diotaiuti, L and Gorla, DE (2016) Distribution of pyrethroid resistant populations of Triatoma infestans in the Southern Cone of South America. PLoS Neglected Tropical Diseases 10, e0004561.CrossRefGoogle ScholarPubMed
Carvajal, G, Mougabure-Cueto, G and Toloza, AC (2012) Toxicity of non-pyrethroid insecticides against Triatoma infestans (Hemiptera: Reduviidae). Memorias do Instituto Oswaldo Cruz 107, 675679.CrossRefGoogle Scholar
Cichero, JA, Gualtieri, JM, Vaez, R, Ríos, CH and Carcavallo, RU (1983) Ensayo de campo con fenitrothion (OMS-43), polvo mojable, en el control de Triatoma infestans en la provincia de Córdoba, Argentina. Informe Técnico Presentado, Ministerio de Salud, República Argentina, Buenos Aires.Google Scholar
Di Rienzo, JA, Casanoves, F, Balzarini, MG, González, L, Tablada, M and Robledo, CW (2017) InfoStat versión 2017. URL. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar.Google Scholar
Ferro, EA, Rojas de Arias, A, Ferreira, ME, Simancas, LC, Rios, LS and Rosner, JM (1995) Residual effect of lambdacyhalothrin on Triatoma infestans. Memorias do Instituto Oswaldo Cruz 90, 415419.CrossRefGoogle ScholarPubMed
ffrench-Constant, RH and Roush, RT (1990) Resistance detection and documentation: the relative roles of pesticidal and biochemical assay. In Roush, RT and Tabashnik, BE (eds), Pesticide Resistance in Arthropods. New York, NY and London: Chapman and Hall, pp. 438.CrossRefGoogle Scholar
Fronza, G, Toloza, AC, Picollo, MI, Spillmann, C and Mougabure-Cueto, G (2016) Geographical variation of deltamethrin susceptibility of Triatoma infestans (Hemiptera: Reduviidae) in Argentina with emphasis on a resistant focus in the Gran Chaco. Journal of Medical Entomology 53, 880887.CrossRefGoogle ScholarPubMed
Fronza, G, Toloza, AC, Picollo, MI, Carbajo, AE, Rodríguezc, S and Mougabure-Cueto, G (2019) Modelling the association between deltamethrin resistance in Triatoma infestans populations of the Argentinian Gran Chaco region with environmental factors. Acta Tropica 194, 5361.CrossRefGoogle ScholarPubMed
Fronza, G, Roca-Acevedo, G, Mougabure-Cueto, GA, Sierra, I, Capriotti, N and Toloza, AC (2020) Insecticide resistance mechanisms in Triatoma infestans (Reduviidae: Triatominae): the putative role of enhanced detoxification and knockdown resistance (kdr) allele in a resistant hotspot from the Argentine Chaco. Journal of Medical Entomology, tjz249. doi: 10.1093/jme/tjz249.Google Scholar
Germano, MD and Picollo, MI (2015) Reproductive and developmental costs of deltamethrin resistance in the Chagas disease vector Triatoma infestans. Journal of Vector Ecology 40, 5965.CrossRefGoogle ScholarPubMed
Germano, MD and Picollo, MI (2018) Stage-dependent expression of deltamethrin toxicity and resistance in Triatoma infestans (Hemiptera: Reduviidae) from Argentina. Journal of Medical Entomology 55, 964968.CrossRefGoogle ScholarPubMed
Germano, MD, Acevedo, GR, Mougabure-Cueto, G, Toloza, AC, Vassena, CV and Picollo, MI (2010 a) New findings of insecticide resistance in Triatoma infestans (Heteroptera: Reduviidae) from the Gran Chaco. Journal of Medical Entomology 47, 10771081.CrossRefGoogle ScholarPubMed
Germano, MD, Vassena, CV and Picollo, MI (2010 b) Autosomal inheritance of deltamethrin resistance in field populations of Triatoma infestans (Heteroptera: Reduviidae) from Argentina. Pest Management Science 66, 705708.CrossRefGoogle ScholarPubMed
Germano, MD, Santo-Orihuela, P and Roca-Acevedo, G (2012) Scientific evidence of three different insecticide-resistant profiles in Triatoma infestans (Hemiptera: Reduviidae) populations from Argentina and Bolivia. Journal of Medical Entomology 49, 13551360.CrossRefGoogle ScholarPubMed
Germano, MD, Picollo, MI and Mougabure-Cueto, G (2013) Microgeographical study of insecticide resistance in Triatoma infestans from Argentina. Acta Tropica 128, 561565.CrossRefGoogle ScholarPubMed
Germano, MD, Picollo, MI, Spillmann, C and Mougabure-Cueto, G (2014) Fenitrothion: an alternative insecticide for the control of deltamethrin-resistant populations of Triatoma infestans in Northern Argentina. Medical and Veterinary Entomology 28, 2125.CrossRefGoogle ScholarPubMed
Gomez, M, Pessoa, GC, Luiz Rosa, AC, Echeverria, JE and Diotaiuti, LG (2015) Inheritance and heritability of deltamethrin resistance under laboratory conditions of Triatoma infestans from Bolivia. Parasite & Vectors 8, 595.CrossRefGoogle ScholarPubMed
Gonzalez-Audino, P, Licastro, S and Zerba, E (1999) Thermal behaviour and biological activity of pyrethroids in smoke-generating formulations. Pest Management Science 55, 11871193.3.0.CO;2-Z>CrossRefGoogle Scholar
González-Audino, P, Vassena, C, Barrios, S, Zerba, E and Picollo, MI (2004) Role of enhanced detoxication in a deltamethrin-resistant population of Triatoma infestans (Hemiptera, Reduviidae) from Argentina. Memorias do Instituto Oswaldo Cruz 99, 335339.CrossRefGoogle Scholar
Guillen, G, Diaz, R, Jemio, A, Cassab, JA, Teixeira Pinto, C and Schofield, CJ (1997) Chagas’ disease vector control in Tupiza, Southern Bolivia. Memorias do Instituto Oswaldo Cruz 92, 18.CrossRefGoogle ScholarPubMed
Gurevitz, JM, Gaspe, MS, Enríquez, GF, Vassena, C, Alvarado-Otegui, JA, Provecho, Y, Mougabure-Cueto, G, Picollo, MI, Kitron, U and Gürtler, RE (2012) Unexpected failures to control Chagas disease vector with pyrethroid spraying in Northern Argentina. Journal of Medical Entomology 49, 13791386.CrossRefGoogle ScholarPubMed
Gurtler, RE, Canale, DM, Spillmann, C, Stariolo, R, Salomón, OD, Blanco, S and Segura, EL (2004) Effectiveness of residual spraying of peridomestic ecotopes with deltamethrin and permethrin on Triatoma infestans in rural western Argentina: a district-wide randomized trial. Bulletin of the World Health Organization 82, 196205.Google ScholarPubMed
Kliot, A and Ghanim, M (2012) Fitness costs associated with insecticide resistance. Pest Management Science 68, 14311437.CrossRefGoogle ScholarPubMed
Lardeux, F, Depickère, S, Duchon, S and Chavez, T (2010) Insecticide resistance of Triatoma infestans (Hemiptera, Reduviidae) vector of Chagas disease in Bolivia. Tropical Medicine and International Health 15, 10371048.Google ScholarPubMed
Lobbia, P, Calcagno, J and Mougabure-Cueto, G (2018) Excretion/defecation patterns in Triatoma infestans populations that are, respectively, susceptible and resistant to deltamethrin. Medical and Veterinary Entomology 32, 311322.CrossRefGoogle ScholarPubMed
Lobbia, PA, Rodríguez, C and Mougabure-Cueto, G (2019 a) Effect of nutritional state and dispersal on the reproductive efficiency in Triatoma infestans (Klug, 1834) (Hemiptera: Reduviidae: Triatominae) susceptible and resistant to deltamethrin. Acta Tropica 191, 228238.CrossRefGoogle ScholarPubMed
Lobbia, PA, Rodríguez, C and Mougabure-Cueto, G (2019 b) Effect of reproductive state on active dispersal in Triatoma infestans (Klug, 1834) (Hemiptera: Reduviidae: Triatominae) susceptible and resistant to deltamethrin. Acta Tropica 196, 714.CrossRefGoogle ScholarPubMed
Marcet, PL, Mora, MS, Cutrera, AP, Jones, L, Gürtler, RE, Kitron, U and Dotson, EM (2008) Genetic structure of Triatoma infestans populations in rural communities of Santiago del Estero, Northern Argentina. Infection, Genetics and Evolution 8, 835846.CrossRefGoogle Scholar
McCart, C, Buckling, A and Ffrench-Constant, RH (2005) DDT Resistance in flies carries no cost. Current Biology 15, 587589.CrossRefGoogle ScholarPubMed
McKenzie, JA (1996) Ecological and Evolutionary Aspects of Insecticide Resistance. California, Academic Press, Inc.Google Scholar
Mougabure-Cueto, G and Picollo, MI (2015) Insecticide resistance in vector Chagas disease: evolution, mechanisms and management. Acta Tropica 149, 7085.CrossRefGoogle ScholarPubMed
Mougabure-Cueto, G and Sfara, V (2016) The analysis of dose-response curve from bioassays with quantal response: deterministic or statistical approaches? Toxicology Letters 248, 4651.CrossRefGoogle ScholarPubMed
Pérez de Rosas, A, Segura, EL and García, B (2007) Microsatellite analysis of genetic structure in natural Triatoma infestans (Hemiptera: Reduviidae) populations from Argentina: its implication in assessing the effectiveness of Chagas’ disease vector control programmes. Molecular Ecology 16, 14011412.CrossRefGoogle ScholarPubMed
Pérez de Rosas, A, Segura, EL, Fichera, L and García, B (2008) Macrogeographic and microgeographic genetic structure of the Chagas’ disease vector Triatoma infestans (Hemiptera: Reduviidae) from Catamarca, Argentina. Genetica 133, 247.CrossRefGoogle ScholarPubMed
Picollo, MI, Vassena, C, Orihuela, PS, Barrios, S, Zaidemberg, M and Zerba, E (2005) High resistance to pyrethroid insecticides associated with ineffective field treatments in Triatoma infestans (Hemiptera: Reduviidae) from Northern Argentina. Journal of Medical Entomology 42, 637642.CrossRefGoogle ScholarPubMed
Pizarro, JC, Gilligan, LM and Stevens, L (2008) Microsatellites reveal a high population structure in Triatoma infestans from Chuquisaca, Bolivia. PLoS Neglected Tropical Diseases 2, e202.CrossRefGoogle ScholarPubMed
Programa Nacional de Chagas (2009) Anuario 2008. Programa Nacional de Chagas, Ministerio de Salud y Deportes, Estado Plurinacional de Bolivia. 36pp.Google Scholar
Remón, C, Lobbia, P, Zerba, E and Mougabure-Cueto, G (2017) A methodology based on insecticide impregnated filter paper for monitoring resistance to deltamethrin in Triatoma infestans field populations. Medical and Veterinary Entomology 31, 414426.CrossRefGoogle ScholarPubMed
Rivero, A, Magaud, A, Nicot, A and Vézilier, J (2011) Energetic cost of insecticide resistance in Culex pipiens mosquitoes. Journal of Medical Entomology 48, 694700.CrossRefGoogle ScholarPubMed
Roca-Acevedo, G, Mougabure-Cueto, G and Germano, M (2011) Susceptibility of sylvatic Triatoma infestans from Andean valleys of Bolivia to deltamethrin and fipronil. Journal of Medical Entomology 48, 828835.CrossRefGoogle ScholarPubMed
Roca-Acevedo, G, Picollo, MI and Santo-Orihuela, P (2013) Expression of insecticide resistance in immature life stages of Triatoma infestans (Hemiptera: Reduviidae). Journal of Medical Entomology 50, 816818.CrossRefGoogle Scholar
Rojas de Arias, A, Lehane, MJ, Schofield, CJ and Fournet, A (2003) Comparative evaluation of pyrethroid insecticide formulations against Triatoma infestans (Klug): residual efficacy on four substrates. Memorias do Instituto Oswaldo Cruz 98, 975980.CrossRefGoogle ScholarPubMed
Rojas de Arias, A, Lehane, MJ, Schofield, CJ and Maldonado, M (2004) Pyrethroid insecticide evaluation on different house structures in a Chagas’ disease endemic area of Paraguayan Chaco. Memorias do Instituto Oswaldo Cruz 99, 657662.CrossRefGoogle Scholar
Santo Orihuela, P, Vassena, CV, Zerba, E and Picollo, MI (2008) Relative contribution of monooxygenase and esterase to pyrethroid resistance in Triatoma infestans (Hemiptera: Reduviidae) from Argentina and Bolivia. Journal of Medical Entomology 45, 298306.CrossRefGoogle Scholar
Sierra, I, Capriotti, N, Fronza, G, Mougabure-Cueto, G and Ons, S (2016) Kdr mutations in Triatoma infestans from the Gran Chaco are distributed in two differentiated focus: implications for resistance managing. Acta Tropica 158, 208213.CrossRefGoogle Scholar
Toloza, AC, Germano, M, Mougabure Cueto, G, Vassena, C, Zerba, E and Picollo, MI (2008) Differential patterns of insecticide resistance in eggs and first instars of Triatoma infestans (Hemiptera: Reduviidae) from Argentina and Bolivia. Journal of Medical Entomology 45, 421426.CrossRefGoogle ScholarPubMed
World Health Organization (WHO) (1994) Protocolo de evaluación de efecto insecticida sobre triatominos. Acta Toxicológica Argentina 2, 2932.Google Scholar
Zaidenberg, M (2012) Evolución de la infestación en un área de triatominos resistentes a piretroides, Salvador Mazza, Salta, Argentina. Revista Argentina de Zoonosis y Enfermedades Infecciosas Emergentes 7, 311.Google Scholar
Zerba, EN (1999) Susceptibility and resistance to insecticides of Chagas disease vectors. Medicina 59, 4146.Google ScholarPubMed