Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-31T23:17:12.130Z Has data issue: false hasContentIssue false

Reproductive strategy of the Nearctic leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae)

Published online by Cambridge University Press:  24 October 2008

Valerio Mazzoni
Affiliation:
University of Pisa, Department C.D.S.L., Section of Agricultural Entomology, Via S. Michele 2, 56124 Pisa, Italy Plant Protection Department, IASMA Research Centre, Via E. Mach 1, I-38010 San Michele a/A (TN), Italy
Janez Prešern
Affiliation:
Department of Entomology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
Andrea Lucchi
Affiliation:
University of Pisa, Department C.D.S.L., Section of Agricultural Entomology, Via S. Michele 2, 56124 Pisa, Italy
Meta Virant-Doberlet*
Affiliation:
Department of Entomology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
*
*Author for correspondence Fax: +029 20 874116 E-mail: [email protected]

Abstract

Mating behaviour of Scaphoideus titanus Ball, the vector of the grapevine disease Flavescence dorée, was investigated in order to determine the role of substrate-borne vibrational signals in intra-specific communication and pair formation. Vibrational signals were recorded from grapevine leaves with a laser vibrometer. Signalling activity of single males changed throughout the day and the peak in activity was associated with twilight and early night when ‘call and fly’ behaviour was observed. Pair formation began with the spontaneous emission of male signals. The male calling signal consisted of a single series of pulses, partially accompanied with a ‘rumble’. The male courtship phrase consisted of four consecutive sections characterized by two sound elements, pulse and ‘buzz’. Female vibrational signals were emitted only in response to male signals. The female response was a single pulse that closely resembled male pulses and was inserted between pulses within the male signals. All recorded vibrational signals of S. titanus have a dominant frequency below 900 Hz. A unique feature of vibrational communication in S. titanus is well-developed intrasexual competition; males may use alternative tactics, in the form of disturbance signals, or silently approach duetting females (satellite behaviour). While the male-female duet appears to be essential for successful localization of females and copulation, it is also vulnerable to, and easily disrupted by, alternative tactics like masking.

Type
Research Paper
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida, R.P.P., Blua, M.J., Lopes, J.R.S. & Purcell, A.H. (2005) Vector transmission of Xylella fastidiosa: applying fundamental knowledge to generate disease management strategies. Annals of the Entomological Society of America 98, 775786.Google Scholar
Bailey, W.J. (2003) Insect duets: underlying mechanisms and their evolution. Physiological Entomology 28, 157174.CrossRefGoogle Scholar
Bailey, W.J., Macleay, C. & Gordon, T. (2006) Acoustic mimicry and disruptive alternative calling tactics in an Australian bushcricket (Caedicia; Phaneropterinae; Tettigoniidae; Orthoptera): does mating influence male calling tactic? Physiological Entomology 31, 201210.CrossRefGoogle Scholar
Barnett, D.E. (1976) A revision of the Nearctic species of the genus Scaphoideus (Homoptera: Cicadellidae). Transactions of the American Entomological Society 102, 485593.Google Scholar
Beanland, L., Noble, R. & Wolf, T.K. (2006) Spatial and temporal distribution of North American grapevine yellows disease and of potenatial vectors of the causal phytoplasmas in Virginia. Environmental Entomology 35, 332344.Google Scholar
Bertin, S., Guglielmino, C.R., Karam, N., Gomulski, L.M., Malacrida, A.R. & Gasperi, G. (2007) Diffusion of the Nearctic leafhopper Scaphoideus titanus Ball in Europe: a consequence of human trading activity. Genetica 131, 275285.Google Scholar
Bonfils, J. & Schvester, D. (1960) Les Cicadelles (Homoptera, Auchenorrhyncha) dans leurs rapports avec la vigne dans le Sud-Ouest de la France. Annales des Epiphyties 3, 325336.Google Scholar
Booij, C.J.H. (1982) Biosystematics of the Muellerianella complex (Homoptera, Delphacidae) interspecific and geographic variation in acoustic behaviour. Zeitschrift für Tierpsychology 58, 3152.Google Scholar
Bosco, D., Alma, A. & Arzone, A. (1997) Studies on population dynamics and spatial distribution of leafhoppers in vineyards (Homoptera: Cicadellidae). Annals of Applied Biology 130, 111.Google Scholar
Bressan, A., Spiazzi, S., Girolami, V. & Boudon-Padieu, E. (2005) Acquisition efficiency of Flavescence dorée phytoplasma by Scaphoideus titanus Ball from infected tolerant or susceptible grapevine cultivars or experimental host plants. Vitis 44, 143146.Google Scholar
Bressan, A., Larrue, J. & Boudon Padieu, E. (2006) Patterns of phytoplasma-infected and infective Scaphoideus titanus leafhoppers in vineyards with high incidence of Flavescence dorée. Entomologia Experimentalis et Applicata 119, 6169.CrossRefGoogle Scholar
Broughton, W.B. (1963) Method in bioacoustic terminology. pp. 324in Busnel, R.G. (Ed.) Acoustic Behaviour of Animals. Amsterdam, Elsevier Science Ltd.Google Scholar
Charif, R.A., Clark, C.W. & Fristup, K.M. (2004) Raven 1.2 User's Manual, Cornell Laboratory of Ornithology, Ithaca, NY.Google Scholar
Claridge, M.F. (1985a). Acoustic signals in the Homoptera: behavior, taxonomy and evolution. Annual Review of Entomology 30, 297317.Google Scholar
Claridge, M.F. (1985b) Acoustic behavior of leafhoppers and planthoppers: species problems and speciation. pp. 103125in Nault, L.R. & Rodriguez, J.G. (Eds) The Leafhoppers and Planthoppers. New York, John Wiley.Google Scholar
Claridge, M.F. & de Vrijer, P.W.F. (1994) Reproductive behavior: the role of acoustic signals in species recognition and speciation. pp. 216233in Denno, R.F. & Perfect, T.J. (Eds) Planthoppers: Their Ecology and Management. New York, Champan & Hall, Inc.Google Scholar
Cocroft, R.B. (2003) The social environment of a aggregating, ant-attended treehopper. Journal of Insect Behaviour 16, 7995.Google Scholar
Cocroft, R.B. & McNett, G. (2006) Vibratory communication in treehoppers (Hemiptera: Membracidae). pp. 305317in Drosopoulos, S. & Claridge, M.F. (Eds) Insect Sounds and Communication: Physiology, Behaviour and Evolution. Boca Raton, FL, Taylor & Francis Group.Google Scholar
Cocroft, R.B. & Rodríguez, R.L. (2005) The behavioral ecology of insect vibrational communication. BioScience 55, 323334.CrossRefGoogle Scholar
Čokl, A. & Virant-Doberlet, M. (2003) Communication with substrate-borne signals in small plant-dwelling insects. Annual Review of Entomology 48, 2050.CrossRefGoogle ScholarPubMed
Čokl, A., Virant-Doberlet, M. & Stritih, N. (2000) The structure and function o songs emitted by southern green stink bugs from Brazil, Florida, Italy and Slovenia. Physiological Entomology 25, 196205.Google Scholar
de Vrijer, P.W.F. (1986) Species distinctiveness and variability of acoustic calling signals in the planthopper genus Javesella (Homoptera: Delphacidae). Netherlands Journal of Zoology 36, 162175.Google Scholar
Delić, D., Seljak, G., Martini, M., Ermacora, P., Carraro, L., Myrta, A. & Đurić, G. (2007) Surveys for grapevine yellows phytoplasmas in Bosnia and Herzegovina. Bulletin of Insectology 60(2), 369370.Google Scholar
Dér, Z., Koczor, S., Zsolnai, B., Ember, I., Kölber, M., Bertaccini, A. & Alma, A. (2007) Scaphoideus titanus identified in Hungary. Bulletin of Insectology 60(2), 199200.Google Scholar
Gillham, M.C. & de Vrijer, P.W.F. (1995) Patterns of variation in the acoustic calling signals of Chloriona planthoppers (Homoptera: Delphacidae) coexisting on the common reed Phragmites australis. Biological Journal of the Linnean Society 54, 245269.Google Scholar
Greenfield, M.D. (1994) Cooperation and conflict in the evoluon of signal interactions. Annual Review of Ecology and Systematics 25, 97126.CrossRefGoogle Scholar
Greenfield, M.D. (2005) Mechanisms and evolution of communal sexual display in arthropods and anurans. Advances in the Study of Behavior 35, 162.Google Scholar
Gwynne, D.T. (1987) Sex-biased predation and the risky mate-locating behaviour of female tick-tock cicadas (Homoptera: Cicadidae). Animal Behaviour 35, 571576.Google Scholar
Heady, S.E., Nault, L.R., Shambaugh, G.F. & Fairchild, L. (1986) Acoustic and mating behavior of Dalbulus leafhoppers (Homoptera: Cicadellidae). Annals of the Entomological Society of America 79, 727736.CrossRefGoogle Scholar
Henry, C.H. (1994) Singing and cryptic speciation in insects. Trends in Ecology and Evolution 9, 388392.CrossRefGoogle ScholarPubMed
Hill, G.T. & Sinclair, W.A. (2000) Taxa of leafhoppers carrying phytoplasmas at sites of Ash Yellows occurrence in New York state. Plant Disease 84, 134138.CrossRefGoogle ScholarPubMed
Hunt, R.E. & Morton, T.L. (2001) Regulation of chorusing behaviour in the vibrational communication system of the leafhopper Graminella nigrifrons. American Zoologist 41, 12221228.Google Scholar
Hunt, R.E. & Nault, L.R. (1991) Roles of interplant movement, acoustic communication and phototaxis in mate-location behavior of the leafhopper Graminella nigrifrons. Behavioral Ecology and Sociobiology 28, 315320.Google Scholar
Ichikawa, T. (1982) Density-related changes in male-male competitive behavior in the rice brown planthopper Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Applied Entomology and Zoology 17, 439452.CrossRefGoogle Scholar
Lessio, F. & Alma, A. (2004a) Dispersal patterns and chromatic response of Scaphoideus titanus Ball (Homoptera, Cicadellidae), vector of the phytoplasma agent of grapevine Flavescence dorée. Agricultural and Forest Entomology 6, 121127.Google Scholar
Lessio, F. & Alma, A. (2004b) Seasonal and daily movement of Scaphoideus titanus Ball (Homoptera: Cicadellidae). Environmental Entomology 33, 1869–1694.CrossRefGoogle Scholar
Maixner, M., Pearson, R.C., Boudon-Padieu, E. & Caudwell, A. (1993) Scaphoideus titanus, a possible vector of grapevine yellows in New York. Plant Disease 77, 408413.CrossRefGoogle Scholar
Marzorati, M., Alma, A., Sacchi, L., Pajoro, M., Palermo, S., Brusetti, L., Raddadi, N., Balloi, A., Tedeschi, R., Clementi, E., Corona, S., Quaglino, F., Bianco, P.A., Beninati, T., Bandi, C. & Daffonchio, D. (2006) A novel Bacteriodetes symbiont is localized in Scaphoideus titanus the insect vector of Flavescence dorée in Vitis vinifera. Applied and Environmental Microbiology 72, 14671475.Google Scholar
Mazzoni, V., Alma, A. & Lucchi, A. (2005) Cicaline dell'agroecosistema vigneto e loro interazioni con la vite nella trasmissione di fitoplasmi. pp. 5574in Bertaccini, A. & Braccini, P. (Eds), Flavescenza dorata e altri giallumi della vite in Toscana e in Italia. Firenze, Italy, Quaderno A.R.S.I.A. 3, LCD srl.Google Scholar
Miranda, X. (2006) Substrate-borne signal repertoire and courtship jamming by adults of Ennya chrysura (Hemiptera: Membracidae). Annals of the Entomological Society of America 99, 374386.Google Scholar
Mori, N., Bressan, A., Martini, M., Guadagnini, M., Girolami, V. & Bertaccini, A. (2002) Experimental transmission by Scaphoideus titanus Ball of two Flavescence dorée-type phytoplasma. Vitis 41, 99102.Google Scholar
Nuhardiyati, M. & Bailey, W. (2005) Calling and duetting behavior in the leafhopper Balclutha incisa (Hemiptera: Cicadellidae: Deltocephalinae): opportunity for female choice? Journal of Insect Behavior 18, 259280.Google Scholar
Ott, J.R. (1994) An ecological framework for the study of planthopper mating systems. pp. 234254in Denno, R.F. & Perfect, T.J. (Eds) Planthoppers: Their Ecology and Management. New York, Chapman & Hall, Inc.CrossRefGoogle Scholar
Posenato, G., Mori, N., Bressan, A., Girolami, V. & Sancassani, G.P. (2001) Scaphoideus titanus, vettore della flavescenza dorata: conoscerlo per combatterlo. L'Informatore Agrario 57, 9193.Google Scholar
Redak, R.A., Purcell, A.H., Lopes, J.R.S., Blua, M.J., Mizell, R.F. & Andersen, P.C. (2004) The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Annual Review of Entomology 49, 243270.Google Scholar
Saxena, K.N. & Kumar, H. (1980) Interruption of acoustic communication and mating in a leafhopper and a planthopper by aerial sound vibrations picked up by plants. Experientia 36, 933936.CrossRefGoogle Scholar
Schvester, D., Carle, P. & Moutous, G. (1969) Nouvelles données sur la transmission de la flavescence dorée de la vigne par Scaphoideus littoralis Ball. Annales de Zoologie et d'Ecologie Animale 1, 445465.Google Scholar
Steffek, R., Reisenzein, H. & Zeisner, N. (2007) Analysis of the pest risk from grapevine flavescence dorée phytoplasma to Austrian viticulture. OEPP/EPPO Bulletin 37, 191203.CrossRefGoogle Scholar
Taylor, R.A.J., Nault, L.R. & Styer, W.E. (1993) Experimental analysis of flight sactivity of three Dalbulus leafhoppers (Homoptera: Auchenorrhyncha) in relation to migration. Annals of the Entomological Society of America 86, 655667.Google Scholar
Tishechkin, D.J. (2006) Acoustic characters in the classification of higher taxa of Auchenorrhyncha (Hemiptera). pp. 319329in Drosopoulos, S. & Claridge, M.F. (Eds) Insect Sounds and Communication: Physiology, Behaviour and Evolution. Boca Raton, FL, Taylor & Francis Group.Google Scholar
Vidano, C. (1964) Scoperta in Italia dello Scaphoideus littoralis Ball cicalina samericana collegata alla flavescence dorée della vite. L'Italia Agricola 101, 10311049.Google Scholar
Virant-Doberlet, M., & Čokl, A. (2004) Vibrational communication in insects. Neotropical Entomology 33, 121134.Google Scholar
Virant-Doberlet, M. & Žežlina, I. (2007) Vibrational communication of Metcalfa pruinosa (Say) (Hemiptera: Fulgoroidea: Flatidae). Annals of the Entomological Society of America 100, 7382.CrossRefGoogle Scholar
Virant-Doberlet, M., Čokl, A. & Zorović, M. (2006) Use of substrate vibrations for orientation: from behaviour to physiology. pp. 8197in Drosopoulos, S. & Claridge, M.F. (Eds) Insect Sounds and Communication: Physiology, Behaviour and Evolution. Boca Raton, FL, Taylor & Francis Group.Google Scholar
Weintraub, P.G. & Beanland, L.A. (2006) Insect vectors of phytoplasmas. Annual Review of Entomology 51, 91111.CrossRefGoogle ScholarPubMed
Witzgall, P., Stelinski, L., Gut, L. & Thomson, D. (2008) Codling moth management and chemical ecology. Annual Review of Entomology 53, 503522.Google Scholar
Zar, J.H. (1999) Biostatistical Analysis. 4th edn.663 pp. Upper Saddler River, New Jersey, Prentice Hall.Google Scholar