Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-20T03:24:54.239Z Has data issue: false hasContentIssue false

Regulatory functions of trehalose-6-phosphate synthase in the chitin biosynthesis pathway in Tribolium castaneum (Coleoptera: Tenebrionidae) revealed by RNA interference

Published online by Cambridge University Press:  18 September 2017

Q.W. Chen
Affiliation:
Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
S. Jin
Affiliation:
Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
L. Zhang
Affiliation:
Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
Q.D. Shen
Affiliation:
Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
P. Wei
Affiliation:
Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
Z.M. Wei
Affiliation:
College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
S.G. Wang
Affiliation:
Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
B Tang*
Affiliation:
Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
*
*Author for correspondence: Tel/Fax: +86-571-28865680 E-mail: [email protected]

Abstract

RNA interference (RNAi) is a very effective technique for studying gene function and may be an efficient method for controlling pests. Trehalose-6-phosphate synthase (TPS), which plays a key role in the synthesis of trehalose and insect development, was cloned in Tribolium castaneum (Herbst) (TcTPS) and the putative functions were studied using RNAi via the injection of double-stranded RNA (dsRNA) corresponding to conserved TPS and trehalose-6-phosphate phosphatase domains. Expression analyses show that TcTPS is expressed higher in the fat body, while quantitative real-time polymerase chain reaction results show that the expression of four trehalase isoforms was significantly suppressed by dsTPS injection. Additionally, the expression of six chitin synthesis-related genes, such as hexokinase 2 and glutamine-fructose-6-phosphate aminotransferase, was suppressed at 48 and 72 h post-dsTPS-1 and dsTPS-2 RNA injection, which were two dsTPS fragments that had been designed for two different locations in TcTPS open reading frame, and that trehalose content and trehalase 1 activity decreased significantly at 72 h post-dsRNA injection. Furthermore, T. castaneum injected with dsTPS-1 and dsTPS-2 RNA displayed significantly lower levels of chitin and could not complete the molting process from larvae to pupae, revealing abnormal molting phenotypes. These results demonstrate that silencing TPS gene leads to molting deformities and high mortality rates via regulation of gene expression in the chitin biosynthetic pathway, and may be a promising approach for pest control in the future.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adarkwah, C., Obeng-Ofori, D., Buttner, C., Reichmuth, C. & Scholler, M. (2010) Bio-rational control of red flour beetle Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) in stored wheat with Calneem®. oil derived from neem seeds. Journal of Pest Science 83, 471479.CrossRefGoogle Scholar
Arakane, Y., Muthukrishnan, S., Kramer, K.J., Specht, C.A., Tomoyasu, Y., Lorenzen, M.D., Kanost, M. & Beeman, R.W. (2005) The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Molecular Biology 14, 453463.CrossRefGoogle ScholarPubMed
Arakane, Y., Specht, C.A., Kramer, K.J., Muthukrishnan, S. & Beeman, R.W. (2008) Chitin synthases are required for survival, fecundity and egg hatch in the red flour beetle, Tribolium castaneum. Insect Biochemistry and Molecular Biology 38, 959962.CrossRefGoogle ScholarPubMed
Asoka, R., Chandra, G.S., Manamohan, M. & Kumar, N.K. (2013) Effect of diet delivered various concentrations of double-stranded RNA in silencing a midgut and a non-midgut gene of Helicoverpa armigera. Bulletin of Entomological Research 103, 555563.CrossRefGoogle Scholar
Avonce, N., Mendoza-Vargas, A., Morett, E. & Iturriaga, G. (2006) Insights on the evolution of trehalose biosynthesis. BMC Evolutionary Biology 6, 109.CrossRefGoogle ScholarPubMed
Belles, X. (2010) Beyond Drosophila: RNAi in vivo and functional genomics in insects. Annual Review of Entomology 55, 111128.CrossRefGoogle ScholarPubMed
Chen, J. & Zhang, D.W. (2015) Molecular cloning, tissue distribution and temperature-induced expression of two trehalose-6-phosphate synthase genes in Blattella germanica (Blattodea: Blattellidae). Acta Entomologica Sinica 58, 10461053.Google Scholar
Chen, J., Tang, B., Chen, H.X., Yao, Q., Huang, X.F., Chen, J., Zhang, D.W. & Zhang, W.Q. (2010a) Different functions of the insect soluble and membrane-bound trehalase genes in chitin biosynthesis revealed by RNA interference. PLoS ONE 5, e10133.CrossRefGoogle ScholarPubMed
Chen, J., Zhang, D.W., Yao, Q., Zhang, J.Q., Dong, X.L., Tian, H.G., Chen, J. & Zhang, W.Q. (2010b) Feeding-based RNA interference of a trehalose phosphate synthase gene in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology 19, 777786.CrossRefGoogle ScholarPubMed
Chen, Q., Ma, E., Behar, K.L., Xu, T. & Haddad, G.G. (2002) Role of trehalose phosphate synthase in anoxia tolerance and development in Drosophila melanogaster. Journal of Biological Chemistry 277, 32743279.CrossRefGoogle ScholarPubMed
Chen, X.F., Tian, H.G., Zou, L.Z., Tang, B., Hu, J. & Zhang, W.Q. (2008) Disruption of Spodoptera exigua larval development by silencing chitin synthase gene A with RNA interference. Bulletin of Entomological Research 29, 17.Google Scholar
Cui, S.X. & Xia, Y.X. (2009) Isolation and characterization of the trehalose-6-phosphate synthase gene from Locusta migratoria manilensis. Insect Science 16, 287295.CrossRefGoogle Scholar
Elbein, A.D., Pan, Y.T., Pastuszak, I. & Corroll, D. (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13, 17R27R.CrossRefGoogle ScholarPubMed
Fire, A., Xu, A.S., Montgomery, M.K., Kostas, S.A., Driver, S.E. & Mello, C.C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806811.CrossRefGoogle ScholarPubMed
Gong, L., Luo, Q., Rizwan-ul-Haq, M. & Hu, M.Y. (2012) Cloning and characterization of three chemosensory proteins from Spodoptera exigua and effects of gene silencing on female survival and reproduction. Bulletin of Entomological Research 102, 600609.CrossRefGoogle ScholarPubMed
Kaya, M., Tozak, K.Ö., Baran, T., Sezen, G. & Sargın, İ. (2013) Natural porous and nano fiber chitin structure from Gammarus argaeus (Gammaridae Crustacea). Excli Journal 12, 503510.Google ScholarPubMed
Kaya, M., Lelešius, E., Nagrockaitė, R., Sargin, I., Arslan, G., Mol, A., Baran, T., Can, E. & Bitim, B. (2015) Differentiations of chitin content and surface morphologies of chitins extracted from male and female grasshopper species. PLoS ONE 10, e0115531.CrossRefGoogle ScholarPubMed
Koch, A. & Kogel, K.H. (2014) New wind in the sails: improving the agronomic value of crop plants through RNAi-mediated gene silencing. Plant Biotechnology Journal 12, 821831.CrossRefGoogle ScholarPubMed
Kola, V.S., Renuka, P., Madhav, M.S. & Mangrauthia, S.K. (2015) Key enzymes and proteins of crop insects as candidate for RNAi based gene silencing. Frontiers in Physiology 6, 119.CrossRefGoogle ScholarPubMed
Kulkarni, M.M., Booker, M., Silver, S.J., Friedman, A., Hong, P., Perrimon, N. & Mathey-Prevot, B. (2006) Evidence of off-target effects associated with long dsRNAs in Drosophia melanogaster cell-based assays. Nature Methods 3, 833838.CrossRefGoogle Scholar
Li, L., Ye, Y., Pan, L., Zheng, S. & Lin, Y. (2009) The induction of trehalose and glycerol in Saccharomyces cerevisiae in response to various stresses. Biochemical and Biophysical Research Communications 387, 778783.CrossRefGoogle ScholarPubMed
Liu, S., Ding, Z., Zhang, C., Yang, B. & Liu, Z. (2010) Gene knockdown by intro-thoracic injection of double-stranded RNA in the brown planthopper, Nilaparvata lugens. Insect Biochemistry and Molecular Biology 40, 666671.CrossRefGoogle ScholarPubMed
Ma, Y., Creanga, A., Lum, L. & Beachy, P.A. (2006) Prevalence of off-target effects in drosophila RNA interference screens. Nature 443, 359363.CrossRefGoogle ScholarPubMed
Minakuchi, C., Namiki, T., Yoshiyama, M. & Shinoda, T. (2008) RNAi mediated knockdown of juvenile hormone acid O-methyltransferase gene causes precocious metamorphosis in the red flour beetle Tribolium castaneum. The FEBS Journal 275, 29192931.CrossRefGoogle ScholarPubMed
Minakuchi, C., Ohde, T., Miura, K., Tananka, T. & Niimi, T. (2015) Role of scalloped in the post-embryonic development of the red flour beetle Tribolium castaneum (Coleoptera: Tenebrionidae). Applied Entomology and Zoology 50, 1726.CrossRefGoogle Scholar
Moffat, J., Reiling, J.H. & Sabatini, D.M. (2007) Off-target effects associated with long dsRNAs in Drosophila RNAi screens. Trends in Pharmacological Sciences 28, 149151.CrossRefGoogle ScholarPubMed
Noh, M.Y., Beeman, R.W. & Arakane, Y. (2012) RNAi-based functional genomics in Tribolium castaneum and possible application for controlling insect pests. Entomological Research 42, 110.CrossRefGoogle Scholar
Nunes, F.M., Aleixo, A.C., Barchuk, A.R., Bomtorin, A.D., Grozinger, C.M. & Simões, Z.L. (2013) Non-target effects of green fluorescent protein (GFP)-derived double-stranded RNA (dsRNA-GFP) used in honey bee RNA interference (RNAi) assays. Insects 4, 90103.CrossRefGoogle ScholarPubMed
Qi, X.L., Su, X.F., Lu, G.Q., Liu, C.X., Liang, G.M. & Cheng, H.M. (2015) The effect of silencing arginine kinase by RNAi on the larval development of Helicoverpa armigera. Bulletin of Entomological Research 105, 555565.CrossRefGoogle ScholarPubMed
Sánchez-Fresneda, R., Guirao-Abad, J.P., Argüelles, A., González-Párraga, P., Valentín, E. & Argüelles, J.C. (2013) Specific stress-induced storage of trehalose, glycerol and D-arabitol in response to oxidative and osmotic stress in Candida albicans. Biochemical and Biophysical Research Communications 430, 13341339.CrossRefGoogle ScholarPubMed
Scott, J.G., Michel, K., Bartholomay, L.C., Siegfried, B.D., Hunter, W.B., Smagghe, G., Zhu, K.Y. & Douglas, A.E. (2013) Towards the elements of successful insect RNAi. Journal of Insect Physiology 59, 12121221.CrossRefGoogle ScholarPubMed
Shi, J.F., Xu, Q.Y., Sun, Q.K., Mu, L.L., Guo, W.C. & Li, Q.Q. (2016) Physiological roles of trehalose in Leptinotarsa larvae revealed by RNA interference of trehalose-6-phosphate synthase and trehalase genes. Insect Biochemistry and Molecular Biology 77, 5268.CrossRefGoogle ScholarPubMed
Shi, Q. & Chung, J.C. (2014) Trehalose metabolism in the blue crab Callinectes sapidus: isolation of multiple structural cDNA isoforms of trehalose-6-phosphate synthase and their expression in muscles. Gene 536, 105113.CrossRefGoogle ScholarPubMed
Seinen, E., Burgerhof, J.G.M., Jansen, R.C. & Sibon, O.C. (2010) RNAi experiments in D. melanogaster: solutions to the overlooked problem of off-targets shared by independent dsRNAs. PLoS ONE 5, e13119.CrossRefGoogle Scholar
Seinen, E., Burgerhof, J.G.M., Jansen, R.C. & Sibon, O.C. (2011) RNAi-induced off-target effects in Drosophila melanogaster: frequencies and solutions. Briefings in Functional Genomics 10, 206214.CrossRefGoogle ScholarPubMed
Tang, B., Chen, J., Yao, Q., Pan, Z.Q., Xu, W.H., Wang, S.G. & Zhang, W.Q. (2010) Characterization of a trehalose-6-phosphate synthase gene from Spodoptera exigua and its function identification through RNA interference. Journal of Insect Physiology 56, 813821.CrossRefGoogle ScholarPubMed
Tang, B., Zheng, H.Z., Xu, Q., Zou, Q., Wang, G.J., Zhang, F., Wang, S.G. & Zhang, Z.H. (2011) Cloning and pattern of expression of trehalose-6-phosphate synthase cDNA from Catantops pinguis (Orthoptera: Catantopidae). European Journal of Entomology 108, 355363.CrossRefGoogle Scholar
Tang, B., Wei, P., Chen, J., Wang, S.G. & Zhang, W.Q. (2012) Progress in gene features and functions of insect trehalases. Acta Entomologica Sinica 55, 13151321.Google Scholar
Tang, B., Xu, Q.Y., Zhao, L.N., Wang, S.G. & Zhang, F. (2014a) Progress in research on the characteristics and functions of trehalose and the TPS gene in insect. Chinese Journal of Applied Entomology 51, 13971405.Google Scholar
Tang, B., Qin, Z., Shi, Z.K., Wang, S., Guo, X.J., Wang, S.G. & Zhang, F. (2014b) Trehalase in Harmonia axyridis (Coleoptera: Coccinellidae): effects on beetle locomotory activity and the correlation with trehalose metabolism under starvation conditions. Applied Entomology and Zoology 49, 255264.CrossRefGoogle Scholar
Tang, B., Wei, P., Zhao, L.N., Shi, Z.K., Shen, Q.D., Yang, M.M., Xie, G.Q. & Wang, S.G. (2016) Knockdown of five trehalase genes using RNA interference regulates the gene expression of the chitin biosynthesis pathways in Tribolium castaneum. BMC Biotechnology 16, 67.CrossRefGoogle ScholarPubMed
Tang, B., Yang, M.M., Shen, Q.D., Xu, Y.X., Wang, H.J. & Wang, S.G. (2017) Suppressing the activity of trehalase with validamycin disrupts the trehalose and chitin biosynthesis pathways in rice brown planthopper, Nilaparvata lugens. Pesticide Biochemistry Physiology 137, 8190.CrossRefGoogle ScholarPubMed
Tatun, N., Singtripop, T., Tungjitwitayakul, J. & Sakurai, S. (2008) Regulation of soluble and membrane-bound trehalase activity and expression of the enzyme in the larval midgut of the bamboo borer Omphisa fuscidentalis. Insect Biochemistry and Molecular Biology 38, 788795.CrossRefGoogle ScholarPubMed
Thorat, L.J., Gaikwad, S.M. & Nath, B.B. (2012) Trehalose as an indicator of desiccation stress in Drosophila melanogaster larvae: a potential marker of anhydrobiosis. Biochemical and Biophysical Research Communications 419, 638642.CrossRefGoogle ScholarPubMed
Tomoyasu, Y. & Denell, R.E. (2004) Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Development Genes and Evolution 214, 575578.CrossRefGoogle ScholarPubMed
Wang, W.X., Zhu, T.H., Li, K.L., Chen, L.F., Lai, F.X. & Fu, Q. (2017) Molecular characterization, expression analysis and RNAi knock-down of elongation factor 1α and 1γ from Nilaparvata lugens and its yeast-like symbiont. Bulletin of Entomological Research 107, 303312.CrossRefGoogle ScholarPubMed
Wang, Y., Fan, H.W., Huang, H.J., Xue, J., Wu, W.J., Bao, Y.Y., Xu, H.J., Zhu, Z.R., Cheng, J.A. & Zhang, C.X. (2012) Chitin synthase 1 gene and its two alternative splicing variants from two sap-sucking insects, Nilaparvata lugens and Laodelphax striatellus (Hemiptera: Delphacidae). Insect Biochemistry and Molecular Biology 42, 637646.CrossRefGoogle ScholarPubMed
Wyatt, G.R. (1967) The biochemistry of sugars and polysaccharides in insects. Advance in Insect Physiology 4, 287360.CrossRefGoogle Scholar
Xi, Y., Pan, P.L., Ye, Y.X., Yu, B., Xu, H.J. & Zhang, C.X. (2015) Chitinase-like gene family in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology 24, 2940.CrossRefGoogle ScholarPubMed
Xiong, K.C., Wang, J., Deng, Y.Q., Pu, P., Fan, H. & Liu, Y.H. (2016) RNA interference of a trehalose-6-phosphate synthase gene reveals its roles during larval-pupal metamorphosis in Bactrocera minax (Diptera:Tephritidae). Journal of Insect Physiology 91–92, 8492.CrossRefGoogle Scholar
Xu, J., Bao, B., Zhang, Z.F., Yi, Y.Z. & Xu, W.H. (2009) Identification of a novel gene encoding the trehalose phosphate synthase in the cotton bollworm, Helicoverpa armigera. Glycobiology 19, 250257.CrossRefGoogle ScholarPubMed
Yang, M.M., Zhao, L.N., Shen, Q.D., Xie, G.Q., Wang, S.G. & Tang, B. (2017) Knockdown of two trehalose-6-phosphate synthases severely affects chitin metabolism gene expression in the brown planthopper Nilaparvata lugens. Pest Management Science 73, 206216.CrossRefGoogle ScholarPubMed
Yilmazel, B., Hu, Y., Sigoillot, F., Smith, J.A., Shamu, C.E., Perrimon, N. & Mohr, S.E. (2014) Online GESS: prediction of miRNA-like off-target effects in large-scale RNAi screen data by seed region analysis. BMC Bioinformatics 15, 192.CrossRefGoogle ScholarPubMed
Zhao, L.N., Yang, M.M., Shen, Q.D., Liu, X.J., Shi, Z.K., Wang, S.G. & Tang, B. (2016) Functional characterization of three trehalase genes regulating the chitin metabolism pathway in rice brown planthopper using RNA interference. Scientific Reports 6, 27841.CrossRefGoogle ScholarPubMed
Zhang, Q., Lu, D.H., Pu, J., Wu, M. & Han, Z.J. (2012) Cloning and RNA interference effects of trehalase genes in Laodelphax striatellus (Homoptera: Delphacidae). Acta Entomologica Sinica 55, 911920.Google Scholar
Zhang, X., Liu, X., Ma, J. & Zhao, J. (2013) Silencing of cytochrome P450 CYP6B6 gene of cotton bollworm (Helicoverpa armigera) by RNAi. Bulletin of Entomological Research 103, 584591.CrossRefGoogle ScholarPubMed
Zhu, Q.S., Arakane, Y., Beeman, R.W., Kramer, K.J. & Muthukrishnan, S. (2008) Functional specialization among insect chitinase family genes revealed by RNA interference. The Proceedings of the National Academy of Sciences of the United States of America 105, 66506655.Google ScholarPubMed