Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T14:10:37.643Z Has data issue: false hasContentIssue false

The potential of Dicyphus hesperus as a biological control agent of potato psyllid and sweetpotato whitefly in tomato

Published online by Cambridge University Press:  08 February 2018

F.J. Calvo*
Affiliation:
R & D Department, Koppert España S.L. Calle Cobre, 22. Polígono Ind. Ciudad del Transporte. 04745 La Mojonera, Almería (España), Spain
A. Torres
Affiliation:
R&D Department, Koppert México SA de CV, Circuito el Marqués Norte 82, Parque Ind. El Marqués, Querétaro, México. E-mail: [email protected]
E.J. González
Affiliation:
R&D Department, Koppert México SA de CV, Circuito el Marqués Norte 82, Parque Ind. El Marqués, Querétaro, México. E-mail: [email protected]
M.B. Velázquez
Affiliation:
R&D Department, Koppert México SA de CV, Circuito el Marqués Norte 82, Parque Ind. El Marqués, Querétaro, México. E-mail: [email protected]
*
*Author for correspondence: Phone: +34 659072651 Fax: +34902431395 E-mail: [email protected]

Abstract

The potential of the mirid predator Dicyphus hesperus Knight (Heteroptera: Miridae) as a biological control agent of the sweetpotato whitefly, Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) and the potato psyllid, Bactericera cockerelli Sulcer (Hemiptera: Psyllidae) in tomato was investigated in two experiments. The first experiment focused on the study of the life history traits of D. hesperus when fed on nymphs of the potato psyllid compared with the factitious prey Ephestia kuehniella Zeller (Lepidoptera: Pyrallidae) eggs. Although reproductive and development rates were higher on E. kuehniella eggs, the predator exhibited a good intrinsic rate of natural increase (rm) when feeding on B. cockerelli nymphs (rm: B. cockerelli 0.069 ± 0.0001; E. kuehniella 0.078 ± 0.0001), thus reflecting good potential as a biocontrol agent of this pest. The second experiment focused on the efficacy of D. hesperus as a biocontrol agent of the potato psyllid and the sweetpotato whitefly in a tomato greenhouse. Prey species were offered individually or together in a series of five treatments in greenhouse cages. Results showed that the predator was able to establish and suppress populations of both pests inhabiting tomato plants when pests occurred alone or together. Thus, D. hesperus was demonstrated to be a suitable biocontrol agent of these two important pests that could be used in tomato greenhouses.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alomar, O. & Wiedenmann, R.N. (1996) Zoophytophagous Heteroptera: Implications for Life History and Integrated Pest Management. Lanham, MD, Entomological Society of America, p. 359.Google Scholar
Andrewartha, H.G. & Birch, L.C. (1954) Distribution and Abundance of Animals. Chicago, IL, University of Chicago Press.Google Scholar
Arnó, J., Castañe, C., Riudavets, J. & Gabarra, R. (2010) Risk of damage to tomato crops by the generalist zoophytophagous predator Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae). Bulletin of Entomological Research 100, 105115.Google Scholar
Banks, E. (2012) Potato zebra chip disease: a potential threat to processing & fresh market crop. Horticultural Matters 13(10), 67.Google Scholar
Birch, L.C. (1948) The intrinsic rate of natural increase of an insect population. Journal of Animal Ecology 17, 1526.Google Scholar
Butler, C.D. & Trumble, J.T. (2012 a) The potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) life history, relationship to plant diseases, and management strategies. Terrestrial Arthropod Review 5, 87111.Google Scholar
Butler, C.D. & Trumble, J.T. (2012b) Identification and impact of natural enemies of Bactericera cockerelli (Hemiptera: Triozidae) in Southern California. Journal of Economic Entomology 105, 15091519.Google Scholar
Calvo, F.J., Bolkmans, K., Stansly, P.A. & Urbaneja, A. (2009) Predation by Nesidiocoris tenuis on Bemisia tabaci and injury to tomato. BioControl 54, 237246.Google Scholar
Calvo, F.J., Bolckmans, K. & Belda, J.E. (2012 a) Release rate for a pre-plant application of Nesidiocoris tenuis for Bemisia tabaci control in tomato. BioControl 57, 809817.Google Scholar
Calvo, F.J., Lorente, M.J., Stansly, P.A. & Belda, J.E. (2012 b) Preplant release of Nesidiocoris tenuis and supplementary tactics for control of Tuta absoluta and Bemisa tabaci in greenhouse tomato. Entomologia Experimentalis et Applicata 143, 111119.Google Scholar
Calvo, F.J., Soriano, J., Bolckmans, K. & Belda, J.E. (2012 c) A successful method for whitefly and Tuta absoluta control in tomato. Evaluation after two years of application in practice. IOBC/WPRS Bulletin 80, 237244.Google Scholar
Calvo, F.J., Torres-Ruiz, A., Velázquez-González, J.C., Rodriguez-Leyva, E. & Lomeli-Flores, J.R. (2016 a) Evaluation of Dicyphus hesperus for biological control of sweet potato whitefly and potato psyllid on greenhouse tomato. BioControl 61, 415424.Google Scholar
Calvo, F.J., Soriano, J.D., Stansly, P.A. & Belda, J.E. (2016 b) Can the parasitoid Necremnus tutae (Hymenoptera: Eulophidae) improve existing biological control of the tomato leafminer Tuta aboluta (Lepidoptera: Gelechiidae)? Bulletin of Entomological Research 106(4), 502511.Google Scholar
Castañé, C., Arnó, J., Gabarra, R. & Alomar, O. (2011) Plant damage to vegetable crops by zoophytophagous mirid predators. Biological Control 59, 2229.Google Scholar
Coll, M. & Guershon, M. (2002) Omnivory in terrestrial arthropods: mixing plant and prey diets. Annual Review of Entomology 47, 267297.Google Scholar
Crawley, M.J. (2002) Statistical Computing. An Introduction to Data Analysis using S-plus. Chichester, UK, Wiley&Sons Press.Google Scholar
Garzón-Tiznado, J.A., Cárdenas-Valenzuela, O.G., Bujanos-Muñiz, R. & Marín-Jarillo, A. (2009) Association of Hemiptera: Triozidae with the disease ‘‘permanente del tomate’’ in Mexico. Agricultura Técnica en México 35, 6172.Google Scholar
Gillespie, D.R. & McGregor, R.R. (2000) The functions of plant feeding in the omnivorous predator Dicyphus hesperus: water places limits on predation. Ecological Entomology 25, 380386.Google Scholar
Gillespie, D.R., McGregor, R.R. & Sánchez, J.A. (2007) Dicyphus hesperus (Hemiptera: Miridae) as a success story in development of endemic natural enemies as biological control agents. pp. 128135 in Vincent, C.M., Goettel, M. and Lazarovits, G. (Eds) Case Studies in Biological Control: A Global Perspective. Oxfordshire, UK: CABI Publishing.Google Scholar
Greenberg, S.M., Jones, W.A. & Liu, T.X. (2002) Interactions among two species of Eretmocerus (Hymenoptera: Aphelinidae), two species of whiteflies (Homoptera: Aleyrodidae), and tomato. Biological Control 31(2), 397402.Google Scholar
Hoddle, M.S. & van Driesche, R.G. (1999) Evaluation of Eretmocerus eremicus and Encarsia formosa (Hymenoptera: Aphelinidae) Beltsville strain in commercial greenhouses for biological control of Bemisia argentifolii (Homoptera: Aleyrodidae) on colored poinsettia plants. Florida Entomologist 82, 556569.Google Scholar
Jones, R. D. (2003) Plant viruses transmitted by whiteflies. European Journal of Plant Pathology 109, 195219.Google Scholar
Laughlin, R. (1965) Capacity for increase: a useful population statistic. Journal of Animal Ecology 34, 7791.Google Scholar
Mackauer, M. (1983) Quantitative assessment of Aphidius smithi (Hymenoptera: Aphidiidae): fecundity, intrinsic rate of increase, and functional response. The Canadian Entomologist 115, 399415.Google Scholar
Maia, A.H.N., Luiz, A.J.B. & Campanhola, C. (2000) Statistical inference on associated fertility life table parameters using jackknife technique: computational aspects. Journal of Economic Entomology 93, 511518.Google Scholar
McGregor, R., Gillespie, D., Quiring, D. & Foisy, M. (1999) Potential use of Dicyphus hesperus Knight (Heteroptera: Miridae) for biological control of pests of greenhouse tomatoes. Biological Control 16, 104110.Google Scholar
McGregor, R.R., Gillespie, D.R., Park, C.G., Quiring, D.M.J. & Foisy, M.R.J. (2000) Leaves or fruit? The potential for damage to tomato fruits by the omnivorous predator, Dicyphus hesperus. Entomologia Experimentalis et Applicata 95, 325328.Google Scholar
Messelink, G.J., van Maanen, R., van Steenpaal, S.E.F. & Janssen, A. (2008) Biological control of thrips and whiteflies by a shared predator: two pests are better than one. Biological Control 44, 372379.Google Scholar
Munyaneza, J.E., Crosslin, J.M. & Upton, J.E. (2007) Association of Bactericera cockerelli (Homoptera: Psyllidae) with “Zebra Chip”, a new potato disease in Southwestern United States and Mexico. Journal of Economic Entomology 100, 656663.Google Scholar
Naranjo, S.E. & Gibson, R.L. (1996) Phytophagy in predaceous Heteroptera: effects on life history and population dynamics. pp. 5793 in Alomar, O. and Wiedenmann, E. (Eds) Zoophytophagous Heteroptera: Implications for Life History and Integrated Pest Management. Annapolis, MD, USA: Entomological Society of America.Google Scholar
Rojas, P., Rodríguez-Leyva, E., Lomeli-Flores, J.R. & Liu, T.X. (2015) Biology and life history of Tamarixia triozae (Hymenoptera: Eulophidae), a parasitoid of Bactericera cockerelli (Hemiptera: Triozidae). BioControl 60, 2735.Google Scholar
Sánchez, J.A. (2008) Zoophytophagy in the plantbug Nesidiocoris tenuis. Agricultural and Forest Entomology 10, 7580.Google Scholar
Sánchez, J.A., Gillespie, D.R. & McGregor, R.R. (2004) Plant preference in relation to life history traits in the zoophytophagous predator Dicyphus hesperus. Entomologia Experimentalis et Applicata 112, 719.Google Scholar
Schuster, D.J. (2001) Relationship of silverleaf whitefly population density to severity of irregular ripening of tomato. Horticultural Science 36, 10891090.Google Scholar
Secor, G.A., Rivera, V.V., Abad, J.A., Lee, I.M., Clover, G.R.G., Liefting, L.W., Li, X. & de Boer, S.H. (2009) Association of ‘Candidatus Liberibacter solanacearum’ with zebra chip disease of potato established by graft and psyllid transmission, electron microscopy, and PCR. Plant Disease 93(6): 574583.Google Scholar
Shipp, J.L. & Wang, K. (2006) Evaluation of Dicyphus hersperus (Heteroptera: Miridae) for biological control of Frankliniella occidentalis (Thysanoptera: Thripidae) on greenhouse tomato. Journal of Economic Entomology 99(2):414420.Google Scholar
Southwood, T.R.E. & Henderson, P.A. (1978) Ecological Methods, with Particular Reference to the Study of Insect Populations. 3rd edn. London, UK: Chapman and Hall.Google Scholar
Urbaneja, A., Montón, H. & Mollá, O. (2009) Suitability of the tomato borer Tuta absoluta as prey for Macrolophus caliginosus and Nesidiocoris tenuis. Journal of Applied Entomology 133, 292296.Google Scholar
Urbaneja, A., González-Cabrera, J., Arnó, J. & Gabarra, R. (2012) Prospects for the biological control of Tuta absoluta in tomatoes of the Mediterranean basin. Pest Management Science 68, 12151222.Google Scholar
van Driesche, R.G., Hoddle, M.S., Roy, S., Lyon, S. & Sanderson, J.P. (2001 a) Effect of parasitoid release pattern on whitefly (Homoptera: Aleyrodidae) control in commercial poinsettia. Florida Entomologist 84, 6369.Google Scholar
van Driesche, R.G., Hoddle, M.S., Lyon, S. & Sanderson, J.P. (2001 b) Compatibility of insect growth regulators with Eretmocerus eremicus (Hymenoptera: Aphelinidae) for whitefly (Homoptera: Alyerodidae) control on poinsettias II. Trials in commercial poinsettia crops. Biological Control 20, 132146.Google Scholar
Vankosky, M.A. & van Laerhoven, S.L. (2015) Plant and prey quality interact to influence the foraging behaviour of an omnivorous insect, Dicyphus hesperus. Animal Behaviour 108, 109116.Google Scholar
Vargas-Madríz, H. (2010) Morfometría y Tabla de visa de Bactericera cockerelli (Sulc) en dos variedades de jitomate en invernadero. Master Thesis, Colegio Postgraduados, Mexico, DF, p. 123.Google Scholar
Workman, P.J. & Whiteman, S.A. (2009) Importing Tamarixia triozae into containment in New Zealand. New Zealand Plant Protect Society 62, 136144.Google Scholar
Xiang-Bing, Y., Yong-Mei, Z., Donald, C.H. & Tong-Xian, L. (2013) Life tables of Bactericera cockerelli (Hemiptera: Triozidae) on tomato under laboratory and field conditions in southern Texas. Florida Entomologist 96(3), 904913.Google Scholar