Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T15:24:37.518Z Has data issue: false hasContentIssue false

Occurrence of pyrethroid resistance mutation in Cydia pomonella (Lepidoptera: Tortricidae) throughout Argentina

Published online by Cambridge University Press:  23 August 2019

J. Soleño*
Affiliation:
Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC)-CONICET, Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén, Argentina Departamento de Química, Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén, Argentina
L.B. Parra-Morales
Affiliation:
Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC)-CONICET, Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén, Argentina Facultad de Ciencias del Ambiente y la Salud, Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén, Argentina
L. Cichón
Affiliation:
Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Alto Valle, General Roca, Argentina
S. Garrido
Affiliation:
Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Alto Valle, General Roca, Argentina
N. Guiñazú
Affiliation:
Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC)-CONICET, Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén, Argentina Facultad de Ciencias del Ambiente y la Salud, Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén, Argentina
C.M. Montagna
Affiliation:
Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC)-CONICET, Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén, Argentina Facultad de Ciencias del Ambiente y la Salud, Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén, Argentina
*
Author for correspondence: J. Soleño, Email: [email protected]

Abstract

Pyrethroid insecticides were intensively used against Cydia pomonella in the Río Negro and Neuquén valley, main production area of pome fruits in Argentina. Therefore, the first objective was to evaluate lambda-cyhalothrin resistance levels in C. pomonella larvae from orchards in this area that are currently under pyrethroids treatments. The second objective was to evaluate the frequency of kdr mutation in C. pomonella across Argentina. High levels of resistance to lambda-cyhalothrin (resistance ratios > 30) were determined in all the populations evaluated. The L1014F (kdr) mutation was evaluated in 355 diapausing larvae collected in 12 orchards from San Juan to Santa Cruz provinces (1690 km away from each other). The highest frequency of kdr mutation was determined in larvae from the Río Negro and Neuquén valley (0.61), followed by those from Mendoza (0.36). The kdr allele was absent or present at very low frequencies in orchards subjected to low pyrethroid pressure. The frequency of detection of kdr mutation in C. pomonella from Argentina is related to the use of pyrethroids against this pest in different areas. Target-site insensitivity is, at least, one of the mechanisms involved in resistance to lambda-cyhalothrin in codling moth from the Río Negro and Neuquén valley.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basoalto, E, Miranda, M, Knight, AL and Fuentes-Contreras, E (2010) Landscape analysis of adult codling moth (Lepidoptera: Tortricidae) distribution and dispersal within typical agroecosystems dominated by apple production in Central Chile. Environmental Entomology 39, 13991408.CrossRefGoogle ScholarPubMed
Bosch, D, Avilla, J, Musleh, S and Rodríguez, MA (2018) Target-site mutations (AChE and kdr), and PSMO activity in codling moth (Cydia pomonella (L.) (Lepidoptera: Tortricidae)) populations from Spain. Pesticide Biochemistry and Physiology 146, 5262.CrossRefGoogle ScholarPubMed
Bouvier, JC, Cuany, A, Monier, C, Brosse, V and Sauphanor, B (1998) Enzymatic diagnosis of resistance to deltamethrin in diapausing larvae of the codling moth, Cydia pomonella (L.). Archives of Insect Biochemistry and Physiology 39, 5564.3.0.CO;2-1>CrossRefGoogle Scholar
Bouvier, JC, Bues, R, Boivin, T, Boudinhon, L, Beslay, D and Sauphanor, B (2001) Deltamethrin resistance in the codling moth (Lepidoptera: Tortricidae): inheritance and number of genes involved. Heredity 87, 456462.CrossRefGoogle ScholarPubMed
Brun-Barale, A, Bouvier, J.-C., Pauron, D, Bergé, J.-B. and Sauphanor, B (2005) Involvement of a sodium channel mutation in pyrethroid resistance in Cydia pomonella L, and development of a diagnostic test. Pest Management Science 61, 549554.CrossRefGoogle ScholarPubMed
Chen, S, Yang, Y and Wu, Y (2005) Correlation between fenvalerate resistance and cytochrome P450-mediated O-demethylation activity in Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Economic Entomology 98, 943946.CrossRefGoogle Scholar
Cichón, LB, Soleño, J, Anguiano, OL, Garrido, SAS and Montagna, CM (2013) Evaluation of cytochrome P450 activity in field populations of Cydia pomonella (Lepidoptera: Tortricidae) resistant to azinphosmethyl, acetamiprid, and thiacloprid. Journal of Economic Entomology 106, 939944.CrossRefGoogle ScholarPubMed
Danelski, W, Kruczyńska, D, Bielicki, P and Rozpara, E (2017) Variation in damage levels by codling moth to ten apple cultivars in an organic orchard in Poland. Turkish Journal of Agriculture and Forestry 41, 121126.CrossRefGoogle Scholar
Dong, K, Du, Y, Rinkevich, F, Nomura, Y, Xu, P, Wang, L, Silver, K and Zhorov, BS (2014) Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochemistry and Molecular Biology 50, 117.CrossRefGoogle ScholarPubMed
Franck, P, Reyes, M, Olivares, J and Sauphanor, B (2007) Genetic architecture in codling moth populations: comparison between microsatellite and insecticide resistance markers. Molecular Ecology 17, 35543564.CrossRefGoogle Scholar
Franck, P, Siegwart, M, Olivares, J, Toubon, J.-F. and Lavigne, C (2012) Multiple origins of the sodium channel kdr mutations in codling moth populations. PLoS ONE 7(8), e43543.CrossRefGoogle ScholarPubMed
Freeland, JR (2005) Genetic analysis of single populations. In John Wiley & Sons (ed.), Molecular Ecology. The Atrium, Southern Gate, Chichester, West Sussex PO 19 8SQ. England: John Wiley & Sons, p. 64.Google Scholar
Fuentes-Contreras, E, Espinoza, JL, Lavandero, B and Ramirez, CC (2008) Population genetic structure of codling moth (Lepidoptera: Tortricidae) from apple orchards in central Chile. Journal of Economic Entomology 101, 190198.CrossRefGoogle ScholarPubMed
Gomes, B, Purkait, B, Deb, RM, Rama, A, Singh, RP, Foster, GM, Coleman, M, Kumar, V, Paine, M, Das, P and Weetman, D (2017) Knockdown resistance mutations predict DDT resistance and pyrethroid tolerance in the visceral leishmaniasis vector Phlebotomus argentipes. PLoS Neglected Tropical Diseases 11, e0005504e0005504.CrossRefGoogle ScholarPubMed
Grigg-McGuffin, K, Scott, IM, Bellerose, S, Chouinard, G, Cormier, D and Scott-Dupree, C (2015) Susceptibility in field populations of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), in Ontario and Quebec apple orchards to a selection of insecticides. Pest Management Science 71, 234242.CrossRefGoogle Scholar
Gunning, RV, Moores, GD and Devonshire, AL (1996) Esterases and esfenvalerate resistance in Australian Helicoverpa armigera (Hübner) Lepidoptera: Noctuidae. Pesticide Biochemistry and Physiology 54, 1223.CrossRefGoogle Scholar
Haddi, K, Berger, M, Bielza, P, Cifuentes, D, Field, LM, Gorman, K, Rapisarda, C, Williamson, MS and Bass, C (2012) Identification of mutations associated with pyrethroid resistance in the voltage-gated sodium channel of the tomato leaf miner (Tuta absoluta). Insect Biochemistry and Molecular Biology 42, 506513.CrossRefGoogle Scholar
Haddi, K, Tomé, HVV, Du, Y, Valbon, WR, Nomura, Y, Martins, GF, Dong, K and Oliveira, EE (2017) Detection of a new pyrethroid resistance mutation (V410L) in the sodium channel of Aedes aegypti: a potential challenge for mosquito control. Scientific Reports 7, 46549.CrossRefGoogle ScholarPubMed
Husain, M, Jagdeesh, PR, Sharma, A, Raja, A, Injila Qadri, I and Waheed Wani, IA (2018) Description and management strategies of important pests of pear: a review. Journal of Entomology and Zoology Studies 6, 677683.Google Scholar
Joseph, SV, Martin, T, Steinmann, K and Kosina, P (2017) Outlook of pyrethroid insecticides for pest management in the Salinas Valley of California. Journal of Integrated Pest Management 8, 111.CrossRefGoogle Scholar
Kasai, S, Sun, H and Scott, JG (2017) Diversity of knockdown resistance alleles in a single house fly population facilitates adaptation to pyrethroid insecticides. Insect Molecular Biology 26, 1324.CrossRefGoogle Scholar
Knight, AL, Dunley, JE and Jansson, RK (2001) Baseline monitoring of codling moth (Lepidoptera: Tortricidae) larval response to benzoylhydrazine insecticides. Journal of Economic Entomology 94, 264270.CrossRefGoogle ScholarPubMed
Kranthi, KR, Jadhav, D, Wanjari, R, Kranthi, S and Russell, D (2001) Pyrethroid resistance and mechanisms of resistance in field strains of Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Economic Entomology 94, 253263.CrossRefGoogle Scholar
Milani, R (1956) Recenti sviluppi delle ricerche genetiche sulla mosca domestica. Bollettino di zoologia 23, 749764.CrossRefGoogle Scholar
Montagna, CM, Gauna, LE, de D'Angelo, AP and Anguiano, OL (2012) Evolution of insecticide resistance in non-target black flies (Diptera: Simuliidae) from Argentina. Memorias do Instituto Oswaldo Cruz 107, 458465.CrossRefGoogle ScholarPubMed
Mota-Sanchez, D, Wise, JC, Poppen, RV, Gut, LJ and Hollingworth, RM (2008) Resistance of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), larvae in Michigan to insecticides with different modes of action and the impact on field residual activity. Pest Management Science 64, 881890.CrossRefGoogle Scholar
Parys, KA, Luttrell, RG, Snodgrass, GL and Portilla, MR (2018) Patterns of tarnished plant bug (Hemiptera: Miridae) resistance to pyrethroid insecticides in the lower Mississippi Delta for 2008–2015: Linkage to pyrethroid use and cotton insect management. Journal of Insect Science 18(2), 29.CrossRefGoogle ScholarPubMed
Reyes, M, Franck, P, Charmillot, PJ, Ioriatti, C, Olivares, J, Pasqualini, E and Sauphanor, B (2007) Diversity of insecticide resistance mechanisms and spectrum in European populations of the codling moth, Cydia pomonella. Pest Management Science 63, 890902.CrossRefGoogle ScholarPubMed
Reyes, M, Franck, P, Olivares, J, Margaritopoulos, J, Knight, A and Sauphanor, B (2009) Worldwide variability of insecticide resistance mechanisms in the codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae). Bulletin of Entomological Research 99, 359369.CrossRefGoogle Scholar
Reyes, M, Collange, B, Rault, M, Casanelli, S and Sauphanor, B (2011) Combined detoxification mechanisms and target mutation fail to confer a high level of resistance to organophosphates in Cydia pomonella (L.) (Lepidoptera: Tortricidae). Pesticide Biochemistry and Physiology 99, 2532.CrossRefGoogle Scholar
Rinkevich, FD, Du, Y and Dong, K (2013) Diversity and convergence of sodium channel mutations involved in resistance to pyrethroids. Pesticide Biochemistry and Physiology 106, 93100.CrossRefGoogle ScholarPubMed
Rodríguez, MA, Bosch, D and Avilla, J (2011) Resistance of Spanish codling moth (Cydia pomonella) populations to insecticides and activity of detoxifying enzymatic systems. Entomologia Experimentalis et Applicata 138, 184192.CrossRefGoogle Scholar
Sauphanor, B and Bouvier, JC (1995) Cross-resistance between benzoylureas and benzoylhydrazines in the codling moth, Cydia pomonella L. Journal of Pest Science 45, 369375.CrossRefGoogle Scholar
Sauphanor, B, Cuany, A, Bouvier, JC, Brosse, V, Amichot, M and Bergé, JB (1997) Mechanism of resistance to deltamethrin in Cydia pomonella (L.) (Lepidoptera Tortricidae). Pesticide Biochemistry and Physiology 58, 109117.CrossRefGoogle Scholar
Sierra, I, Capriotti, N, Fronza, G, Mougabure-Cueto, G and Ons, S (2016) Kdr mutations in Triatoma infestans from the Gran Chaco are distributed in two differentiated loci: Implications for pyrethroid resistance management. Acta Tropica 158, 208213.CrossRefGoogle Scholar
Smith, LB, Kasai, S and Scott, JG (2016) Pyrethroid resistance in Aedes aegypti and Aedes albopictus: important mosquito vectors of human diseases. Pesticide Biochemistry and Physiology 133, 112.CrossRefGoogle ScholarPubMed
Soderlund, DM (2005) Sodium channels. In Gilbert, LI, Iatrou, K and Gill, SS (eds), Comprehensive Molecular Insect Science. Amsterdam: Elsevier Science Publisher, pp. 124.Google Scholar
Soderlund, DM (2012) Molecular mechanisms of pyrethroid insecticide neurotoxicity: recent advances. Archives of Toxicology 86, 165181.CrossRefGoogle ScholarPubMed
Soleño, J, Anguiano, L, de D'Angelo, AP, Cichon, L, Fernandez, D and Montagna, C (2008) Toxicological and biochemical response to azinphos-methyl in Cydia pomonella L. (Lepidoptera: Tortricidae) among orchards from the Argentinian Patagonia. Pest Management Science 64, 964970.CrossRefGoogle ScholarPubMed
Soleño, J, Anguiano, OL, Cichón, LB, Garrido, SA and Montagna, CM (2012) Geographic variability in response to azinphos-methyl in field-collected populations of Cydia pomonella (Lepidoptera: Tortricidae) from Argentina. Pest Management Science 68, 14511457.CrossRefGoogle ScholarPubMed
Sonoda, S (2010) Molecular analysis of pyrethroid resistance conferred by target insensitivity and increased metabolic detoxification in Plutella xylostella. Pest Management Science 66, 572575.CrossRefGoogle ScholarPubMed
Voudouris, CC, Sauphanor, B, Franck, P, Reyes, M, Mamuris, Z, Tsitsipis, JA, Vontas, J and Margoritopoulos, JT (2011) Insecticide resistance status of the codling moth Cydia pomonella (Lepidoptera: Tortricidae) from Greece. Pesticide Biochemistry and Physiology 100, 229238.CrossRefGoogle Scholar
Yang, Y, Chen, S, Wu, S, Yue, L and Wu, Y (2006) Constitutive overexpression of multiple cytochrome P450 genes associated with pyrethroid resistance in Helicoverpa armigera. Journal of Economic Entomology 99, 17841789.CrossRefGoogle ScholarPubMed
Zibaee, I, Mahmood, K, Esmaeily, M, Bandani, AR and Kristensen, M (2018) Organophosphate and pyrethroid resistances in the tomato leaf miner Tuta absoluta (Lepidoptera: Gelechiidae) from Iran. Journal of Applied Entomology 142, 181191.CrossRefGoogle Scholar