Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-06T06:58:32.713Z Has data issue: false hasContentIssue false

Observations on the Hibernation of Phlebotomus Papatasii (Dipt.)

Published online by Cambridge University Press:  10 July 2009

Oskar Theodor
Affiliation:
Department of Parasitology, Hebrew University, Jerusalem.

Summary

Hibernation of P. papatasii in Palestine is primarily caused by low temperature, but cyclical (? hereditary) factors exist which modify the phenomena of hibernation to a certain extent, as indicated by the following facts.

1. Occurrence of a gradually increasing number of resting larvae during autumn, with a maximum of hibernating larvae in the first winter generations.

2. A gradually increasing prolongation of development during the late summer generation, with a maximum duration of development in the first winter generations in larvae kept at 30°C.

3. The pupation of hibernating larvae kept at 30°C. in spring at the same time as of larvae kept in out-of-door conditions during the winter.

There is always a certain number of resting larvae (2 to 12 per cent.) throughout the summer in otherwise active broods. This inhibition of development shows that a latent inclination to diapause exists in all generations, and that diapause may also be brought about by unfavourable conditions.

No relation could be found between the interval between hatching and oviposition and asthenobiosis.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1934

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, S. & Theodor, O. 1927. The transmission of Leishmania tropica from artificially infected sandflies to man. —Ann. Trop. Med. Parasit. 21, p. 89.CrossRefGoogle Scholar
Adler, S. & Theodor, O. 1931. Investigations on Mediterranean Kala Azar. III. —Proc. Roy. Soc. (B) 108, p. 464.Google Scholar
Aschner, M. 1927. Observations on the breeding of Phlebotomus papatasii. —Trans. Roy. Soc. Trop. Med. Hyg. 20, p. 452.CrossRefGoogle Scholar
Cousin, G. 1932. Etude expérimentale de la diapause des insectes. Bull. Biol. Fr. Belg. Suppl. 15.Google Scholar
Hecht, O. 1933. Die Blutnahrung, die Erzeugung der Eier und die Ueberwinterung der Stechmueckenweibchen. —Arch. Schiffs- u. Tropenhyg. 37, Beih. no. 3.Google Scholar
Martini, E. 1921. Zur Bionomie unserer Stechmuecken—Arch. Schiffs- u. Tropenhyg. 25, p. 341.Google Scholar
Martini, E. 1931. Culicidae. Lindner’s Handbuch der palaearktischen Dipteren.Google Scholar
Parrot, L. 1931. Observations biologiques sur Phlebotomus papatasii. —Arch. Inst. Pasteur Algers 9, p. 442.Google Scholar
Roubaud, E. & Colas, Belcour J. 1927. Recherches biologiques sur les Phlébotomes de la Tunisie du Nord. —Arch. Inst. Pasteur Tunis 16, p. 59.Google Scholar
Roubaud, E. 1927. L’hétérodynamie et le role de l’athermobiose dans le cycle évolutif de Phlebotomus papatasii. —Bull. Soc. Path. exot. 20, p. 613.Google Scholar
Roubaud, E. 1928a. Longue durée de l’asthénobiose pseudohivernale chez Phlebotomus papatasii. Action réactivante de l’athermobiose prolongée. —Bull. Soc. Path. exot. 21, p. 107.Google Scholar
Roubaud, E. 1928b. Asthénobiose et hibernation obligatoire provoquées chez Phlebotomus papatasii. —Bull. Soc. Path. exot. 21, p. 436.Google Scholar