Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-31T22:50:41.807Z Has data issue: false hasContentIssue false

Nuclear magnetic resonance spectroscopy for studying the development and detection of the grain weevil, Sitophilus granarius (L.) (Coleoptera: Curculionidae), within wheat kernels

Published online by Cambridge University Press:  10 July 2009

J. Chambers
Affiliation:
Ministry of Agriculture, Fisheries and Food, Slough LaboratoryLondon Road, Slough, Berks, SL3 7HJ, UK
N. J. McKevitt
Affiliation:
Ministry of Agriculture, Fisheries and Food, Slough LaboratoryLondon Road, Slough, Berks, SL3 7HJ, UK
M. R. Stubbs
Affiliation:
Ministry of Agriculture, Fisheries and Food, Slough LaboratoryLondon Road, Slough, Berks, SL3 7HJ, UK

Abstract

A novel non-destructive method was devised for studying the development of insects hidden within individual wheat grains using a standard nuclear magnetic resonance (NMR) spectrometer. The development of Sitophilus granarius (L.) at 25°C and 70% RH was studied from egg-laying to emergence by NMR, X-radiography and weighing. The results of the three methods correlated quite well. Neither the NMR nor the X-radiation appeared to harm the insects. The NMR method did not usually detect the insects until they were in the third larval instars, but after that the areas of the two NMR peaks observed with each infested grain followed a pattern which was readily interpreted in terms of the insect development. The major NMR peak was found to be due almost wholly to water and the minor peak to lipid, and the size of the major peak obtained with adults was close to that expected on the basis of their water content. The movement of some of the insects within the grains was observed for short periods and appeared to be characteristic of each developmental stage. Preliminary work with a less sophisticated NMR machine showed that it is possible in a single scan to detect ten grains infested with S. granarius larvae in a batch of 500 grains, but further work is required to see whether single eggs can be detected. The results obtained in this study were sufficiently encouraging for a wide variety of other areas to be suggested in which use of NMR might help to solve some entomological problems.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, R. E.Wolfe, J. E.Milner, M. & Shellenberger, J. A. (1954). Detection of internal insect infestation in grain by sound amplification.—Cereal Chem. 31, 271276.Google Scholar
Ashman, F.Elias, D. G.Ellison, J. F. & Spratley, R. (1969). An instrument for detecting insects within food grains.—Milling 151, 3236.Google Scholar
Bailey, S. W. & Mccabe, J. B. (1965). The detection of immature stages of insects within grains of wheat.—J. stored Prod. Res. 1, 201202.Google Scholar
Baker, J. E. & Mabie, J. M. (1973). Growth and development of larvae of the granary weevil, Sitophilus granarius (Coleoptera: Curculionidae), on natural and meridic diets.—Can. Ent. 105, 249256.CrossRefGoogle Scholar
Battersby, M. K.Garlick, P. B.Seeley, P. J.Sehr, P. A. & Radda, G. K. (1978). Phosphorus nuclear magnetic resonance studies in living tissue.—pp. 175193in Agris, P. F. (Ed.). Biomolecular structure and function.—y9614 pp. New York, Academic Press.Google Scholar
Buck, J. B. (1953). The internal environment in regulation and metamorphosis.—pp. 191217in Roeder, K. D. (Ed.) Insect physiology.— 1100 pp. New York, Wiley.Google Scholar
Burkholder, W. E. (1981). Biomonitoring for stored-product insects.—pp. 2940in Mitchell, E. R. (Ed.). Management of insect pests with semiochemicals: concepts and practice.— 514 pp. New York, Plenum.Google Scholar
Campbell, A.Singh, N. B. & Sinha, R. N. (1976). Bioenergetics of the granary weevil, Sitophilus granarius (L.) (Coleoptera: Curculionidae).—Can. J. Zool. 54, 786798.CrossRefGoogle Scholar
Daniels, A. J., Krebs, J., Levine, B. A., Wright, P. E. & Williams, R. J. P. (1977). The proton NMR spectra of whole organs.—pp. 277287in Dwek, R. A.Campbell, I. A., Richards, R. E. & Williams, R. J. P. (Eds.). NMR in biology.—381 pp. London, Academic Press.Google Scholar
Dennis, N. M. & Decker, R. W. (1962). A method and machine for detecting living internal insect infestation in wheat.—J. econ. Ent. 55, 199203.CrossRefGoogle Scholar
Dobie, P. (1973). An investigation into the use of an X-ray technique in the study of pre-emergent stages of Sitophilus oryzae (L.) developing in Manitoba wheat.—J. stored Prod. Res. 9, 712.CrossRefGoogle Scholar
Eastham, L. E. S. & Segrove, F. (1947). The influence of temperature and humidity on instar length in Calandra granaria Linn.—J. exp. Biol. 24, 7994.CrossRefGoogle ScholarPubMed
Edney, E. B. (1977). Water balance in land arthropods.—282 pp. Berlin, Springer-Verlag (Zoophysiology and Ecology, vol. 9).CrossRefGoogle Scholar
Fesus, I. (1972). Detection and estimation of internal pest infestation in seeds by the application of X-ray techniques.—Bull. Orgn Eur. Mediterr. Prot. Pl. no. 3, 6576. (Seen in Rev. appl. Ent. (A) (1973) 61, Abst. 925.)Google Scholar
Florkin, M. & Jeuniaux, C. (1974). Hemolymph: composition.—pp. 255307in Rockstein, M. (Ed.). The physiology of Insecta. Vol. V.—2nd edn, 648 pp. New York, Academic Press.Google Scholar
Govaerts, J. & Leclercq, J. (1946). Water exchange between insects and air moisture.—Nature, Lond. 157, 483.CrossRefGoogle Scholar
Hadjinicolaou, J. (1931). Effect of certain radio waves on insects affecting certain stored products.—Jl N. Y. ent. Soc. 39, 145150.Google Scholar
Halstead, D. G. H. (1963). External sex differences in stored-products Coleoptera.—Bull. ent. Res. 54, 119134.CrossRefGoogle Scholar
Howe, R. W. & Currie, J. E. (1964). Some laboratory observations on the rates of development, mortality and oviposition of several species of Bruchidae breeding in stored pulses.—Bull. ent. Res. 55, 437477.CrossRefGoogle Scholar
Howe, R. W. & Oxley, T. A. (1944). The use of carbon dioxide production as a measure of infestation of grain by insects.—Bull. ent. Res. 35, 1122.CrossRefGoogle Scholar
Imura, O. (1979). The extraction of insects of stored products from samples using a modified Tullgren funnel.—Jap. J. appl. Ent. Zool. 23, 134140.Google Scholar
Kirkpatrick, R. L. & Wilbur, D. A. (1965). The development and habits of the granary weevil, Sitophilus granarius within the kernel of wheat.—J. econ. Ent. 58, 979985.CrossRefGoogle Scholar
Kuroda, K. (1934). Études sur la teneur en eau dans le sang du ver-à-soie (Bombyx mori L.) au cours du développement.—Keijo J. Med. 5, 151164.Google Scholar
Lee, M. R. (1961). The variation of blood volume with age in the desert locust (Schistocerca gregaria Forsk).—J. Insect Physiol. 6, 3651.CrossRefGoogle Scholar
Levinson, H. Z. & Levinson, A. R. (1977). Integrated manipulation of storage insects by pheromones and food attractants—a proposal.—Z. angew. Ent. 84, 337343.CrossRefGoogle Scholar
Longstaff, B. C. (1981). Biology of the grain pest species of the genus Sitophilus (Coleoptera: Curculionidae): a critical review.—Protection Ecology 3, 83130.Google Scholar
Loschiavo, S. R. (1975 a). Field tests of devices to detect insects in different kinds of grain storages.—Can. Ent. 107, 385389.CrossRefGoogle Scholar
Loschiavo, S. R. (1975 b). The detection of insects by traps in grain-filled boxcars during transit.—pp. 639650in Brady, E. V., Brower, J. H., Hunter, P. E., Jay, E. G., Lum, P. T. M., Lund, H. O., Mullen, M. A. & Davis, R. (Organisers). Proceedings of the First International Working Conference on Stored-Product Entomology, Savannah, Georgia, USA, October 7-11, 1974. Savanna & Athens, Georgia, Stored-Product Insects Research and Development Laboratory.Google Scholar
Loughton, B. G. & Tobe, S. S. (1969). Blood volume in the African migratory locust.—Can. J. Zool. 47, 13331336.CrossRefGoogle Scholar
Mills, R. B. (1965). Early germ feeding and larval development of the Angoumois grain moth.—J. econ. Ent. 58, 220223.CrossRefGoogle ScholarPubMed
Mills, R. B. & Wilbur, D. A. (1967). Radiographic studies of Angoumois grain moth development in wheat, corn, and sorghum kernels.—J. econ. Ent. 60, 671677.Google Scholar
Milner, M., Lee, M. R. & Katz, R. (1950). Application of X-ray technique to the detection of internal insect infestation of grain.—J. econ. Ent. 43, 933935.CrossRefGoogle Scholar
Osuji, F. N. C. (1982). Radiographic studies of the development of Callosobruchus maculatus Fabricius (Coleoptera: Bruchidae) in cowpea seeds.—J. stored Prod. Res. 18, 18.CrossRefGoogle Scholar
Pinniger, D.B. (1975). The use of bait traps for assessment of stored-product insect populations.—Co-op, econ. Insect Rep. 25, 907909.Google Scholar
Richards, O. W. (1947). Observations on grain-weevils, Calandra (Col., Curculionidae). I. General biology and oviposition.—Proc. zool. Soc. Lond. 117, 143.Google Scholar
Robinson, W. (1928). Water conservation in insects.—J. econ. Ent. 21, 897902.CrossRefGoogle Scholar
Rockstein, M & Miguel, J. (1973). Aging in insects.—pp. 371478in Rockstein, M. (Ed.), The physiology of Insecta. Vol. I.—2nd edn, 512 pp. New York, Academic Press.Google Scholar
Saplina, G. S. (1980). Traps with food baits.— Zashch. Rast. no. 9, 41. (Seen in Rev. appl. Ent. (A) (1981) 69, abst. 5489.)Google Scholar
Scott, A. I. & Baxter, R. L. (1981). Applications of 13C NMR to metabolic studies.—Annu. Rev. Biophys. & Bioeng. 10, 151174.CrossRefGoogle ScholarPubMed
Singh, N. B. & Sinha, R. N. (1977). Carbohydrate, lipid and protein in the developmental stages of Sitophilus oryzae and S. granarius (Coleoptera: Curculionidae).—Ann. ent. Soc. Am. 70, 107111.CrossRefGoogle Scholar
Soderstrom, E. L. (1960). Recognition and duration of larval instars of the rice weevil and the granary weevil.—J. Kans. ent. Soc. 33, 157161.Google Scholar
Staddon, B. W. (1966). The permeability to water of the cuticles of some adult water bugs.—J. exp. Biol. 44, 6976.Google Scholar
Street, M. W. (1971). Nuclear magnetic resonance for detecting hidden insect infestation in stored grains.—J. Georgia entomol. Soc. 6, 249254.Google Scholar
Street, M. W. Jr. & Bruce, W. A. (1976). CO2 analyzer detects insects hidden in foods.—Fd Engng 48, 9495.Google Scholar
Trauba, R. L. (1981). Determination of internal insect infestation of wheat: collaborative study.—J. Ass. off. analyt. Chem. 64, 14081410.Google ScholarPubMed
Wilkin, D. R. (1982). Sampling bulk grain.—6 pp. Pinner, UK, Ministry of Agriculture, Fisheries & Food (Leaflet CL23).Google Scholar
Wyatt, G. R. (1961). The biochemistry of insect hemolymph.A. Rev. Ent. 6, 75102.CrossRefGoogle Scholar
Zakladnoi, G. & Sinyurina, O. (1977). Apparatus for detecting concealed insect infestation of grain.—Mukomol ‘no-elevatornaya i Kombikormovaya Promyshelennost’ no. 7, 2930. (Seen in Nutr. Abstr. Rev. (B) (1978) 48, Abstr. 721.)Google Scholar
Ziller, C. & Simpson, P. (1974). Action des radiations ionisantes sur le développement des insectes.—Année Biol. 13, 1726.Google Scholar