Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-03T13:59:05.908Z Has data issue: false hasContentIssue false

Multilocus phylogeography of the world populations of Elaeidobius kamerunicus (Coleoptera, Curculionidae), pollinator of the palm Elaeis guineensis

Published online by Cambridge University Press:  08 May 2020

Julien Haran*
Affiliation:
CBGP, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
Raphael François Xavier Ndzana Abanda
Affiliation:
IRAD, BP 2067 Yaoundé, Cameroon
Laure Benoit
Affiliation:
CBGP, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
Claude Bakoumé
Affiliation:
Maxi Productivity Sarl, BP 2137/24240 Douala, Cameroon
Laurence Beaudoin-Ollivier
Affiliation:
Systèmes de Pérennes, CIRAD, Univ Montpellier, Montpellier, France
*
Author for correspondence: Julien Haran, Email: [email protected]

Abstract

Elaeidobius kamerunicus Faust (Coleoptera, Curculionidae) is one of the specific pollinators on inflorescences of the African oil palm Elaeis guineensis Jacquin. This derelomine weevil is native to tropical Africa. During the late 20th century, it was introduced into all tropical regions where E. guineensis is grown, in order to improve its pollination and fruit set. Despite an overall success, a decline in pollination efficiency has been documented in several regions. In this study, we reconstructed a multilocus phylogeography of the world populations of E. kamerunicus, in order to explore its genetic diversity in its native and introduced ranges. Our results showed that African populations of E. kamerunicus are forming two differentiated mitochondrial clusters in West and central Africa, forming a contact zone along the Cameroon Volcanic Line. The existence of this sharp contact zone along this weak altitudinal barrier suggests that other parameters, such as climate, may be driving the distribution of populations. A differential genetic structure between mitochondrial and nuclear genes, and the strong level of genetic structure of the mitochondrial gene, also suggest sex-biased dispersal in this species, with males dispersing more than females. The genetic structure inferred from Asian and South American populations suggests that they originate from populations of both western and central tropical Africa and that a bottleneck has probably been experienced by these populations.

Type
Research Paper
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appiah, SO and Agyei-Dwarko, D (2013) Studies on entomophil pollination towards sustainable production and increased profitability in the oil palm: a review. Elixir Agriculture 55, 12878–12833.Google Scholar
Auffray, T, Frérot, B, Poveda, R, Louise, C and Beaudoin-Ollivier, L (2017) Diel patterns of activity for insect pollinators of two oil palm species (Arecales: Arecaceae). Journal of Insect Science 17, 16.CrossRefGoogle Scholar
Chinchilla, CM and Richardson, DL (1989) Pollinating insects and the pollination of oil palms in Central America. Boletin Tecnico OPO-Ub 3, 2948.Google Scholar
Clement, M, Posada, D and Crandall, KA (2000) TCS: A computer program to estimate gene genealogies. Molecular Ecology 9, 16571659.CrossRefGoogle ScholarPubMed
Cochard, B and Durand-Gasselin, T (2018) Advances in conventional breeding techniques for oil palm. Chapter 7. In Rival, A (ed.), Achieving Sustainable Cultivation of oil Palm Volume 1. Introduction, Breeding and Cultivation Techniques. Philadelphia, USA: Burleighh Dodds Science Publishing, pp. 117144. 286 p.CrossRefGoogle Scholar
Cochard, B, Adon, B, Rekima, S, Billotte, N, Desmier de Chenon, R, Koutou, A, Nouy, B, Omoré, A, Razak, P, Glaszmann, JC and Noyer, JL (2009) Geographic and genetic structure of African oil palm diversity suggests new approaches to breeding. Tree Genetics & Genomes 5, 493504.CrossRefGoogle Scholar
Corley, RHV and Tinker, PB (2016) The oil Palm, 5th Edn. Chichester, UK: Wiley Blackwell Ed. 687 p.Google Scholar
Corrado, F (1985) La conformation des régimes de palmier huile (Elaeis guineensis Jacq.) dans quelques plantations de Colombie. Oléagineux 40, 173187.Google Scholar
Demenou, BB, Doucet, JL and Hardy, OJ (2017) History of the fragmentation of the African rain forest in the Dahomey Gap: insight from the demographic history of Terminalia superba. Heredity 120, 547561.CrossRefGoogle ScholarPubMed
Dhileepan, K (1992) Pollen carrying capacity, pollen load and pollen transferring ability of the oil palm pollinating weevil Elaeidobius Kamerunicus Faust in India. Oléagineux (Paris) 47, 5561.Google Scholar
Dhileepan, K (1994) Variation in populations of the introduced pollinating weevil (Elaeidobius Kamerunicus) (Coleoptera: Curculionidae) and Its impact on fruit set of oil palm (Elaeis Guineensis) in India. Bulletin of Entomological Research 84, 477485.CrossRefGoogle Scholar
Donough, CR, Chew, KW and Law, IH (1996) Effect of fruit set on OER and KER: results from studies at Pamol Estates (Sabah) Sdn Bhd. The Planter 72, 203219.Google Scholar
Dufay, M, Hossaert-McKey, M and Anstett, MC (2003) When leaves act like flowers: how dwarf palm attract their pollinators. Report. Ecology Letters 6, 2834.CrossRefGoogle Scholar
Duminil, J, Brown, RP, Ewédjè, EBK, Mardulyn, P, Doucet, JL and Hardy, OL (2013) Large-Scale pattern of genetic differentiation within African rainforest trees: insights on the roles of ecological gradients and past climate changes on the evolution of Erythrophleum Spp (Fabaceae). BMC Evolutionary Biology 13, 195.CrossRefGoogle Scholar
Dupont, LM, Donner, B, Schneider, RR, Gerold, W (2001) Palynological records from the Congo fan analyzed on ODP Site 175-1077. PANGAEA, https://doi.org/10.1594/PANGAEA.872026, Supplement to: Dupont, LM et al. (2001): Mid-Pleistocene environmental change in tropical Africa began as early as 1.05 Ma. Geology 29, 195–198. https://doi.org/10.1130/0091-7613(2001)029%3C0195:MPECIT%3E2.0.CO;2.CrossRefGoogle Scholar
Ergo, AB (1997) Nouvelle évidence de l'origine africaine de l'Elaeis guineensis Jacq. par la découverte de graines fossiles en Uganda. Annales de Gembloux 102, 191201.Google Scholar
Etia, PM (1980) Climate. In Laclavere, G and Loung, JF (eds), Jeune Afrique. Paris: Atlas of the United Republic of Cameroon, Groupe J.A., pp. 1619.Google Scholar
Franz, N and Valente, RM (2006) Evolutionary trends in derelomine flower weevils (Coleoptera: Curculionidae): from associations to homology. Invertebrate Systematics 19, 499530.CrossRefGoogle Scholar
Guindon, S and Gascuel, O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696704.CrossRefGoogle ScholarPubMed
Haran, J, Koutroumpa, F, Magnoux, E, Roques, A and Roux, G (2015) Ghost mtDNA haplotypes generated by fortuitous NUMTs can deeply disturb infra-specific genetic diversity and phylogeographic pattern. Journal of Zoological Systematics and Evolutionary Research 53, 109115.CrossRefGoogle Scholar
Haran, J, Rousselet, J, Tellez, D, Roques, A and Roux, G (2018) Phylogeography of Monochamus galloprovincialis, the European vector of the pinewood nematode. Journal of Pest Science 91, 247257.CrossRefGoogle Scholar
Haran, J, Beaudoin-Ollivier, L, Benoit, L and Kuschel, G (2020). Revision of the palm-pollinating weevils genus Elaeidobius Kuschel, 1952 (Curculionidae, Curculioninae, Derelomini) with description of two new species. European Journal of Taxonomy (in press).CrossRefGoogle Scholar
Hartley, CWS (1967) The oil Palm, 3rd Edn, London: Longman Green and Co. Ltd., 706 p.Google Scholar
Hassanin, A, Khouider, S, Gembu, GC, Goodman, SM, Kadjo, B, Nesi, N, Pourrut, X, Nakouné, E and Bonillo, C (2015) The comparative phylogeography of fruit bats of the tribe Scotonycterini (Chiroptera, Pteropodidae) reveals cryptic species diversity related to African Pleistocene forest refugia. Comptes Rendus Biologies 338, 197211.CrossRefGoogle ScholarPubMed
Hernández-Vera, G, Caldara, R, Toševski, I and Emerson, BC (2013) Molecular phylogenetic analysis of archival tissue reveals the origin of a disjunct southern African–Palaearctic weevil radiation. Journal of Biogeography 40, 13481359.CrossRefGoogle Scholar
Jacquemard, JC (1995) Le palmier à huile. Le technicien d'agriculture tropicale. Maisonneuve et Larose Ed. 207 p.Google Scholar
Kumar, S, Stecher, G and Tamura, K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 18701874.CrossRefGoogle ScholarPubMed
Kutywayo, D, Chemura, A, Kusena, W, Chidoko, P and Mahoya, C (2013) The impact of climate change on the potential distribution of agricultural pests: the case of the coffee white stem borer (Monochamus Leuconotus P.) in Zimbabwe. PLoS ONE 8, e73432.CrossRefGoogle Scholar
Labarca, MV and Narvaez, Z (2009) Identificación y fluctuación poblacional de insectos polinizadores en palma aceitera (Elaeis guineensis Jacquin) en el sur del lago de Maracaibo, estado Zulia, Venezuela. Revista de la Facultad de Agronomia 26, 305324.Google Scholar
Launois, M, Chirara, F, Durand-Gasselin, T and Rival, A (2016) 36 shades of oil palm or All about the oil palm. Collection « Les savoirs partagés». Cirad. 84 p.Google Scholar
Le Gall, P, Goergen, G and Neuenschwander, P (2002) Les Insectes et le Sillon Dahoméen: fragmentation et refuges forestiers. Biosystema 20, 7380.Google Scholar
Le Gall, P, Silvain, JF, Nel, A and Lachaise, D (2010) Les insectes actuels témoins des passés de l'Afrique : essai sur l'origine et la singularité de l'entomofaune de la région afrotropicale. Annales de la Société Entomologique de France 46, 297343.Google Scholar
Leaché, AS and Fujita, MK (2010) Bayesian species delimitation in West African forest geckos (Hemidactylus fasciatus). Proceedings of the Royal Society B 277, 30713077.CrossRefGoogle Scholar
Li, K, Tscharntke, T, Saintes, B, Buchori, D and Grass, I (2019) Critical factors limiting pollination success in oil palm: a systematic review. Agriculture, Ecosystem & Environment 280, 152160.CrossRefGoogle Scholar
Librado, P and Rozas, J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data 25, 1451–1452. PMID: 19346325 53.Google Scholar
Mariau, D and Genty, P (1988) Contribution de l’IRHO à l’étude des insectes pollinisateurs du palmier à huile en Afrique, Amérique du Sud et Indonésie. Oléagineux 43(6), 233238.Google Scholar
Mariau, D, Houssou, M, Lecoustre, R and Ndigui, B (1991) Insectes pollinisateurs du palmier à huile et taux de nouaison en Afrique de l'ouest. Oléagineux 46, 4351.Google Scholar
Miller, CS and Gosling, WD (2014) Quaternary forest associations in lowland tropical West Africa. Quaternary Science Reviews 84, 725.CrossRefGoogle Scholar
Montes Bazurto, LG, Sanchez, LA, Prada, F, Daza, ES, Bustillo, AE and Romero, HM (2018) Relationships between inflorescences and pollinators and their effects on bunch components in Elaeis guineensis in Colombia. Journal of Entomological Science 53, 554568.CrossRefGoogle Scholar
Nurul Fatihah, AL, Muhamad, FMH, Luqman, HA, Syarifah Nadiah, SMD, Teo, TM, Izfa Riza, H and Idris, AB (2019) Effects of rainfall, number of male inflorescences and spikelets on the population abundance of Elaeidobius Kamerunicus (Coleoptera: Curculionidae). Sains Malaysiana 48, 1521.Google Scholar
Piggott, CJ (1990) Growing oil palms. An illustrated guide. The incorporated Society of planters. Kuala Lumpur, Malaysia. 152 p.Google Scholar
Potter, L (2015) Managing oil palm landscapes: A seven-country survey of the modern palm oil industry in Southeast Asia, Latin America and West Africa. Occasional Paper 122. Cifor Ed., Bogor, Indonesia 145 p.Google Scholar
Rambaut, A (2010) FigTree v1.3.1. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/.Google Scholar
Rao, V and Law, IH (1998) The problem of poor fruit set in parts of East Malaysia. Planter, Kuala Lumpur 74, 463483.Google Scholar
Rival, A and Levang, P (2013) La palme des controverses. Palmier à huile et enjeux de développement. Ed Quae, Versailles, France. 98 p.CrossRefGoogle Scholar
Sambathkumar, S and Ranjith, AM (2011) Insect pollinators of oil palm in Kerala with special reference to African weevil, Elaeidobius Kamerunicus Faust. Pest Management in Horticultural Ecosystems 17, 1418.Google Scholar
Savi, S (2018) The palm oil market: groth and trends. Chapitre 1. In Rival, A (ed.), Achieving Sustainable Cultivation of oil Palm Volume 1. Introduction, Breeding and Cultivation Techniques. Philadelphia, USA: Burleighh Dodds Science Publishing, pp. 315, 286 p.Google Scholar
Syed, RA (1982) Insect pollination of oil palm: feasibility of introducing Elaeidobius spp. Into Malaysia. In Pusharajah, E and PS, Chew (eds.), The Oil Palm in Agriculture in the Eighties, vol. I. Kuala Lumpur: Incorporated Society of Planters, pp. 263289.Google Scholar
Syed, RA, Law, IH and Corley, RHV (1982) Insects pollination of oil palm: introduction establishment and pollinating efficiency of Elaeidobius Kamerunicus in Malaysia. Technical article, Planter, Kuala Lumpur 58, 547561.Google Scholar
Zeven, AC (1964) On the origin of the oil palm (Elaeis guineensis Jacq.). Grana Palynologia 5, 121123.CrossRefGoogle Scholar
Supplementary material: Image

Haran et al. supplementary material

Haran et al. supplementary material 1

Download Haran et al. supplementary material(Image)
Image 20 MB
Supplementary material: File

Haran et al. supplementary material

Haran et al. supplementary material 2

Download Haran et al. supplementary material(File)
File 11.5 KB