Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-22T11:53:26.718Z Has data issue: false hasContentIssue false

Mosquito density forecast from flooding: population dynamics model for Aedes caspius (Pallas)

Published online by Cambridge University Press:  22 February 2010

T. Balenghien*
Affiliation:
Biomathématiques et épidémiologie, Équipe Environnement et prédiction de la santé des populations, laboratoire TIMC-IMAG, UMR 5525, CNRS/École nationale vétérinaire de Lyon, 1 avenue Bourgelat, 69280Marcy l'Étoile, France
A. Carron
Affiliation:
Entente interdépartementale pour la démoustication du littoral méditerranéen (EID Méditerranée), 165 avenue Paul Rimbaud, 34184Montpellier Cedex 4, France
G. Sinègre
Affiliation:
Entente interdépartementale pour la démoustication du littoral méditerranéen (EID Méditerranée), 165 avenue Paul Rimbaud, 34184Montpellier Cedex 4, France
D.J. Bicout
Affiliation:
Biomathématiques et épidémiologie, Équipe Environnement et prédiction de la santé des populations, laboratoire TIMC-IMAG, UMR 5525, CNRS/École nationale vétérinaire de Lyon, 1 avenue Bourgelat, 69280Marcy l'Étoile, France
*
*Author for correspondence Fax: +33 4 67 59 37 95 E-mail: [email protected]

Abstract

Insect population dynamics depend strongly on environmental factors. For floodwater mosquitoes, meteorological conditions are crucial in the rhythm of mosquito abundances. Indeed, rainfall triggers the egg hatching after flooding breeding sites, and temperature controls the duration of the aquatic immature development up to adult emergence.

According to this, we have developed a simple mechanistic and tractable model that describes the population dynamics of floodwater mosquitoes as a function only of the most accessible meteorological variables, rainfall and temperature. The model involves three parameters: development duration tdev of the immature aquatic stages, the adult emergence rate function f(t) (characterized by the emergence time scale τ and shaping the profile of adult population abundance), and the depletion rate, α, of adult disappearance.

The developed model was subsequently applied to fit experimental field data of the dynamics of Aedes caspius (Pallas), the main pest mosquito in southern France. First, it was found that the emergence rate function of adult mosquitoes very well reproduce experimental data of the dynamics of immature development for all sampled temperatures. The estimated values of tdev and τ both exhibit Arrhenius behaviour as a function of temperature. Second, using the meteorological records of rainfall and temperature as inputs, the model correctly fit data from a two-site CO2 trapping survey conducted in 2004 and 2005. The estimated depletion rates (summation of the mortality and the emigration rates) were found to be a concave quadratic function of temperature with a maximum of 0.5 per days at about 22°C.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Malek, A.A. & Adham, F.K. (1978) Effect of diet, temperature, relative humidity, sex association on the longevity of Aedes caspius adults. Acta Entomologica Bohemoslovaca 75, 357361.Google Scholar
Ahumada, J.A., Lapointe, D. & Samuel, M.D. (2004) Modeling the population dynamics of Culex quinquefasciatus (Diptera: Culicidae), along an elevational gradient in Hawaii. Journal of Medical Entomology 41, 11571170.CrossRefGoogle ScholarPubMed
Becker, N., Petric, D., Zgomba, M., Boasse, C., Dahl, C., Lane, J. & Kaiser, A. (2003) Mosquitoes and their Control. 498 pp. New York, USA, Kluwer Academic/Plenum Publishers.CrossRefGoogle ScholarPubMed
Bicout, D.J. & Sabatier, P. (2004) Mapping Rift Valley fever vectors and prevalence using rainfall variations. Vector Borne Zoonotic Diseases 4, 3342.CrossRefGoogle ScholarPubMed
Carron, A., Bichaud, L., Platz, N. & Bicout, D.J. (2008) Survivorship characteristics of the mosquito Aedes caspius adults from southern France under laboratory conditions. Medical and Veterinary Entomology 22, 7073.CrossRefGoogle Scholar
Clements, A.N. (1999) The Biology of Mosquitoes: Sensory Reception and Behaviour. vol. 2. 740 pp. London, UK, Chapman & Hall.CrossRefGoogle Scholar
Davidson, G. (1954) Estimation of the survival-rate of anopheline mosquitoes in nature. Nature 174, 792793.CrossRefGoogle Scholar
Detinova, T.S. (1963) Méthodes à Appliquer pour Classer par Groupes d'Age les Diptères Présentant une importance Médicale. 220 pp. Geneva, Switzerland, OMS.Google Scholar
Fouque, F. & Baumgärtner, J. (1996) Simulating development and survival of Aedes vexans (Diptera: Culicidae) preimaginal stages under field conditions. Journal of Medical Entomology 33, 3238.CrossRefGoogle ScholarPubMed
Gabinaud, A. (1975) Ecologie de deux Aedes halophiles du littoral méditerranéen français: Aedes (Ochlerotatus) caspius (Pallas, 1771) Aedes (Ochlerotatus) detritus (Haliday, 1833) (Nematocera-Culicidae). Thèse de doctorat de science, Université des Sciences et Techniques du Languedoc, Université de Perpignan, Perpignan, France.Google Scholar
Hannoun, C., Panthier, R. & Corniou, B. (1966) Isolation of Tahyna virus in the south of France. Acta Virologica 10, 362364.Google ScholarPubMed
Juminer, B., Kchouk, M., Rioux, J.A. & Ben Osman, F. (1964) A propos des Culicides vulnérants de la banlieue littorale de Tunis. Archives de l'Institut de Pasteur de Tunis 41, 2332.Google Scholar
Lundström, J.O. (1999) Mosquito-Borne Viruses in Western Europe: A Review. Journal of Vector Ecology 24, 139.Google ScholarPubMed
Matlab (2008) Optimization toolbox. Matlab 4.1 (R2008b) 4 Aug 2008. Natick, MA, USA, The MathWorks.Google Scholar
Moreau, J.P., Bihan-Faou, P. & Sinègre, G. (1976) Essais de transmission transovarienne du virus Tahyna chez ‘Aedes (O.) caspius’ (Pallas, 1771). Médecine Tropicale: Revue du Corps de Santé Ccolonial 36, 441442.Google Scholar
Moutailler, S., Krida, G., Schaffner, F., Vazeille, M. & Failloux, A.B. (2008) Potential Vectors of Rift Valley Fever Virus in the Mediterranean Region. Vector Borne and Zoonotic Diseases 8, 749753.CrossRefGoogle ScholarPubMed
Ndiaye, P.I., Bicout, D.J., Mondet, B. & Sabatier, P. (2006) Rainfall triggered dynamics of Aedes mosquito aggressiveness. Journal of Theoretical Biology 243, 222229.CrossRefGoogle ScholarPubMed
Porphyre, T., Bicout, D.J. & Sabatier, P. (2005) Modelling the abundance of mosquito vectors versus flooding dynamics. Ecological Modelling 183, 173181.CrossRefGoogle Scholar
Rioux, J.A., Croset, H., Corre, J.J., Simoneau, P. & Gras, G. (1968) Phyto-ecological basis of mosquito control: cartography of larval biotopes. Mosquito News 28, 572582.Google Scholar
Rodhain, F. & Hannoun, C. (1980) Present Status of Arboviruses in France. pp. 111114in Vesenjak-Hirjan, J., Porterfield, J.S. & Arslanagic, E. (Eds) Arboviruses in the Mediterranean Countries. 6th FEMS Symposium. Stuttgart and New York, Gustav Fischer Verlag.Google Scholar
Service, M.W. (1993) Estimation of mortalities of immature stages and adults. pp. 752889in Service, M.W. (Ed.) Mosquito Ecology: Field Sampling Methods. London, UK, Chapman & Hall.Google Scholar
Schaeffer, B., Mondet, B. & Touzeau, S. (2008) Using a climate-dependent model to predict mosquito abundance: Application to Aedes (Stegomyia) africanus and Aedes (Diceromyia) furcifer (Diptera: Culicidae). Infection, Genetics and Evolution 8, 422432.CrossRefGoogle ScholarPubMed
Shaman, J., Stieglitz, M., Stark, C., Le Blancq, S. & Cane, M. (2002) Using a dynamic hydrology model to predict mosquito abundances in flood and swamp water. Emerging Infectious Diseases 8, 6–13.CrossRefGoogle ScholarPubMed
Shone, S.M., Curriero, F.C., Lesser, C.R. & Glass, G.E. (2006) Characterizing population dynamics of Aedes sollicitans (Diptera: Culicidae) using meteorological data. Journal of Medical Entomology 43, 393402.CrossRefGoogle ScholarPubMed
Sinègre, G. (1974) Contribution à l'étude physiologique d'Aedes (Ochlerotatus) caspius (Pallas, 1771) (Nematocera – Culicidae): éclosion – dormance – développement – fertilité. Thèse de doctorat en sciences naturelles, Université des Sciences et Techniques du Languedoc, Université Montpellier 2, Montpellier, France.Google Scholar
Vazeille, M., Jeannin, C., Martin, E., Schaffner, F. & Failloux, A.B. (2008) Chikungunya: A risk for Mediterranean countries? Acta Tropica 105, 200202.CrossRefGoogle ScholarPubMed
Zar, J.H. (1999) Biostatistical Analysis. 929 pp. Upper Saddle River, New Jersey, USA, Prentice Hall.Google Scholar