Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T15:01:59.742Z Has data issue: false hasContentIssue false

Morphology and ultrastructure of the antennal sensilla of Sitophilus granarius (Coleoptera: Curculionidae)

Published online by Cambridge University Press:  28 March 2016

S.A.I. Ali
Affiliation:
Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
M.M. Diakite
Affiliation:
Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
S. Ali
Affiliation:
Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
M.-Q. Wang*
Affiliation:
Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
*
*Author for correspondence: E-mail: [email protected]

Abstract

Sensilla are sense organs in insects, typically consisting of a group of cuticle or epidermal cells that appear as hairs or rod-shaped structures. Sensilla serve as the functional elements of sensory systems. The goal of this study was to determine the type and distribution of sensilla in the antennae of Sitophilus granarius (L.) using light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). This is one of the first studies in which the morphology and distribution patterns of sensilla on antennal segments of male and female S. granarius have been investigated using SEM, followed by TEM. Different morphological sensilla types, including two sensilla basiconica (SB) types, with two subtypes, four sensilla coeloconica (SC) types and five sensilla chaetica (SCH) types, with one subtype, have been identified on S. granarius antennae, whose external structure and shape are peculiar. TEM micrographs of SB on the antennae of S. granarius are characterized by strongly corrugated pores around the cuticle, while micrographs of SC longitudinal sections showed flat-tipped and smooth-surfaced pegs bearing an apical pore that is suggestive of a gustatory function. TEM micrographs of SCH longitudinal sections showed dendrite branches and cuticular pore arrow heads that may be involved in the perception of humidity, temperature, heat and CO2. Because SCH of different sizes were distributed around the head and rostrum, these may function as contact-chemoreceptors .These results are discussed in relation to the possible roles of the sensilla types in the host location behavior of S. granarius.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altner, H. & Loftus, R. (1985) Ultrastructure and function of insect thermo- and hygroreceptors. Annual Review in Entomology 30, 273295.Google Scholar
Andrea, D.G., Emanuela, M.I., Marco, V.R.S. & Roberto, R. (2012) Functional structure of antennal sensilla in the myrmecophilous beetle Paussus favieri (Coleoptera, Carabidae, Paussini). Micron 43, 705719.Google Scholar
Borg, T.K. & Norris, D.M. (1971) Ultrastructure of sensory receptors on the antennae of Scolytus multistriatus (Marsh.). Zeitschrift für Zellforschung und Mikroskopische Anatomie 113, 1328.CrossRefGoogle ScholarPubMed
Bousquet, Y. (1990) Beetles associated with stored products in Canada: an identification guide. Ottawa, Canada, Canada Department of Agriculture Publication.Google Scholar
Chapman, R.F. (1982) Chemoreception: the significance of receptor numbers. Advances in Insect Physiology 16, 247356.Google Scholar
Chen, H.B., Zhang, Z., Wang, H.-B. & Kong, X.-B. (2010) Antennal morphology and sensilla ultrastructure of Dendroctonus valens LeConte (Coleoptera: Curculionidae, Seolytinae), an invasive forest pest in China. Micron 41, 735741.Google Scholar
Cox, P.D. (2004) Potential for using semiochemicals to protect stored products from insect infestation. Journal of Stored Products Research 40, 125.Google Scholar
Faustini, D.L., Giese, W.L., Phillips, L.K. & Burkholder, W.E. (1982) Aggregation pheromone of the male granary weevil, Sitophilus granarius (L.). Journal of Chemical Ecology 8, 679687.Google Scholar
Gullan, P.J. & Cranston, P. (2009) The Insects: An Outline of Entomology. Oxford, UK, Wiley Blackwell.Google Scholar
Hu, F., Zhang, G.N. & Wang, J.J. (2009) Scanning electron microscopy studies of antennal sensilla of bruchid beetles, Callosobruchus chinensis (L.) and Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Micron 40, 320326.CrossRefGoogle ScholarPubMed
Hunger, T. & Steinbrecht, R.A. (1998) Functional morphology of a double-walled multiporous olfactory sensillum: the sensillum coeloconicum of Bombyx mori (Insecta, Lepidoptera). Tissue and Cell 30, 1429.Google Scholar
Keil, T.A. & Steinbrecht, R.A. (1984) Mechanosensitive and Olfactory Sensilla of Insects, pp. 477516. New York, Springer.Google Scholar
Magan, N., Hope, R., Cairns, V. & Aldred, D. (2003) Post-harvest fungal ecology: impact of fungal growth and mycotoxin accumulation in stored grain. European Journal of Plant Pathology 109, 723730.CrossRefGoogle Scholar
Maria, D.S., Simone, P. & Anna, M.A. (2011) Sensilla on the antennal funiculus of the blow fly, Protophormia terraenovae (Diptera: Calliphoridae). Micron 42, 471477.Google Scholar
Merivee, E., Rahi, M., Bresciani, J., Ravn, H.P. & Luik, A. (1998) Antennal Sensilla of the click beetle Limonius aeruginosus (Olivier) (Coleoptera: Elateridae). PII: S0020-7322, 00023-3.Google Scholar
Onagbola, E.O. & Fadamiro, H.Y. (2008) Scanning electron microscopy studies ofantennal sensilla of Pteromalus cerealellae (Hymenoptera: Pteromalidae). Micron 39, 526535.Google Scholar
Onagbola, E.O., Meyer, W.l., Boina, D.R. & Stelinski, L.L. (2008) Morphological characterization of the antennal sensilla of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), with reference to their probable functions. Micron 39, 11841191.Google Scholar
Phillips, T.W. (1997) Semiochemicals of stored-product insects: research and applications. Journal of Stored Products Research 33, 1730.Google Scholar
Renthal, R., Velasquez, D., Olmos, D., Hampton, J. & Wergin, W.P. (2003) Structure and distribution of antennal sensilla of the red imported fire ant. Micron 34, 405413.CrossRefGoogle ScholarPubMed
Roberto, R., Marco, V.R.S., Paola, R. & Nunzio, I. (2009) The sensory structures of the antennal flagellum in Hyalesthes obsoletus (Hemiptera: Fulgoromorpha: Cixiidae): a functional reduction? Arthropod Structure and Development 38, 473483.Google Scholar
Sauer, D.B., Storey, C.L. & Walker, D.E. (1984) Fungal populations in US farming-stored grain and their relationship to moisture, storage time, regions and insect infestation. Phytopathology 74, 10501053.Google Scholar
Schneider, D. (1964) Insect antennae. Annual Review of Entomology 9, 103122.Google Scholar
Sukontason, K., Methanitikorn, R., Chaiwong, T., Kurahashi, H., Vogtsberger, R.C. & Sukontason, K.L. (2007) Sensilla of the antenna and palp of Hydrotaea chalcogaster (Diptera: Muscidae). Micron 38, 218223.Google Scholar
Sun, X., Wang, M.-Q. & Zhang, G. (2011) Ultrastructural observations on antennal sensilla of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Microscopy Research and Technique 74, 113121.Google Scholar
Vonnie, D.C.S. (2010) High resolution ultrastructural investigation of insect sensory organs using field emission scanning electron microscopy. in Méndez-Vilas, A. & Díaz, J. (Eds) Microscopy: Science, Technology, Applications and Education. Badajoz, Spain, Formatex Research Center.Google Scholar
Yang, H., Yan, S.-C. & Liu, D. (2009) Ultrastructural observations on antennal sensilla of Coleophora obducta (Meyrick) (Lepidoptera: Coleophoridae). Micron 40, 231238.Google Scholar
Zacharuk, R.Y. (1985) Antennal sensilla. pp. 1–69 in Kerkut, G.A. & Gilbert, L.I. (Eds) Comparative Insect Physiology, Biochemistry and Pharmacology, Vol. 6. Oxford, Pergamon Press.Google Scholar